THE SVARC-MILNOR LEMMA
GEORGI KOCHARYAN

ABSTRACT

We present the entire path to the Svarc-Milnor lemma from scratch. After defining groups
and metric spaces, we define actions of groups on metric spaces, a concept of metric on a
group and show how they are related. This is done via the Svarc-Milnor lemma, a beautiful
result giving an exact relationship under some well-behavedness conditions. The primary use
of this document is the 240-minute course at Maths Beyond Limits 2023.

We will prove a non-topological version of the Svarc-Milnor lemma, which might look considerably
different to what you will find if you look it up online. This is good because people who don’t
know any topology will be able to understand it. But this is also bad because our version of the
theorem will sound considerably more long-winded. But translating between the two versions
isn’t hard and we will offer a derivation of the more familiar topological version in an optional
final chapter. In this document, an exercise is a fairly easy question that builds up theory and
you should try and solve for completeness. In contrast, a problem is at the end of a chapter and is
typically harder and optional for understanding the theory. We will assume the axiom of choice.
Starred sections are optional for the proof of Svarc-Milnor and we will only discuss them if we
have enough time.

The problems in this text draw heavily from [2].

1. WHAT ARE GROUPS AND METRIC SPACES?

We draw on Chapters 1,2 and 3 from Evan Chen’s Napkin [I] for a concise introduction. If you
have time you can read these chapters in advance, but we will go through the important parts in
the course. Especially relevant is the beginning of Chapter 3 on generating sets.

2. GROUP ACTIONS

Lots of mathematical structures have some way of rearranging their own elements in a meaningful
way. It turns out that we can sometimes discover groups ’inside’ of these rearrangements, which
give us a lot of information about both the group, and the structure. We start with the simplest
example of this, which is the case of a set (i.e. just the elements with no additional structure
specified).

2.1. ACTING ON SETS

Let X be a set in the remainder of this section, unless specificed otherwise.

DEFINITION 2.1. A group action of a group G on X, written G~ X is a function a:Gx X - X
with the properties that

(i) VzeeX:a(lg,z)=1.
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(ii)) Vg,he G,z € X : a(gh,z) =a(g,a(h,x)).
If « is understood, we will write g.z instead of a(g,x).

With this, each group element corresponds to a bijection from X to itself. Further, the composi-
tion of group elements corresponds to the composition of the bijections, and the identity element
to the identity map. We can translate this idea into the language of homomorphisms as follows.

THEOREM 2.2. Every group action of G on X corresponds to a homomorphism from G to
Sym(X).

PRrROOF. The correspondence is that given «, the image of g— a(g, ) is a bijection from X to X
for any g. Check yourself that this correspondence is a homomorphism, and that the reverse also
works. 0

EXAMPLE 2.3. Any group acts on any set via the trivial group action, namely the one corre-
sponding to the trivial homomorphism.

EXAMPLE 2.4. The dihedral group Dy, acts on the 2n—gon by rotations and reflections.

EXAMPLE 2.5. We can consider the group of ways to rotate a cube, which acts on the cube.
How many elements does this group have?

2.2. *ORBITS AND STABILISERS*

It can be useful to consider the two following objects given a group action of a group G on a set
X.

DEFINITION 2.6. Given a fixed « € X, its orbit, written Orb(z) is the subset of X of elements
that can be reached by applications of the group action. Written more precisely,

Orb(z):={yeX|3geG:g.x=y}.

Exercise 2.1. Prove that for any group action on a set, the orbits partition the set. Equivalently,
being in the same orbit is an equivalence relation.

DEFINITION 2.7. Given a fixed z € X, its stabiliser, written Stab(z) or G, is the subset of G of
elements that don’t change x under the group action, that is,

Stab(z):={g€G|g.x=z}.

Exercise 2.2. Prove that for any group action of G on a set X and any z € X, the stabiliser of
x is a subgroup of G.

The next theorem is an extremely useful statement that you should test on some examples of
group actions, such as Example

THEOREM 2.8 (Orbit-Stabiliser). Let a finite group G act on a set X. Then for a fixed z € X,
we have

|Orb(x)]| - |Stab(z)| = |G].
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PRrOOF. Every element of the group maps x somewhere. Given a fixed g.x =y, let us think about
how many elements of G also map x to y. If h € G with h.x =y, then

ha=gx=g '.(ha)=1=g 'hecStab(z) = hcg-Stab(z).

This is the set of all elements that we get after left-multiplying those in the stabiliser of x with
g- It is not hard to see that exactly this multiplication gives a bijection between the two sets, so
there are the same amount of elements here as in the original stabiliser! This means that there
are as many h that map x to y as there are elements of G that stabilise x. This is true for any
y in the orbit of x, so we can associate |Stab(z)| many elements of G with every element in the
orbit of x, which proves the claim. O

2.3. *THE BURNSIDE LEMMA*

In how many ways can we paint the faces of a cube in three colours? If two paintings can be
rotated to become the same, we don’t count them seperately. We will see that the solution to
this riddle is naturally translated into the language of group actions.

DEFINITION 2.9. Call R¢ the group of rotations of a cube (that map it to a cube again). This
is a group because composition of rotations gives a rotation, and rotations as all functions fulfill
associativity, and are invertible. Also we count ,doing nothing“as a rotation.

THEOREM 2.10. R has 24 elements.

ProOOF. We simply count all of the elements. First, notice that the identity is one element.
Next, consider those with a rotation axis through two opposite faces that fix them, and rotate
the others. For each pair of opposite faces, there are 3 non-identity rotations, giving 3-3=9
such transformations, which we call face rotations. Now count those with an axis through two
opposite corners. These have 2 non-identity rotations for each of the 3 pairs, giving 4-2 =28 such
rotations, called corner rotations. Finally, note that we can also pick a rotation axis through
opposite edges, which each only give one possible rotation, so 6-1 =6 possible edge rotations. In
total we thus have 1+9+846 =24. O

Exercise 2.3. Prove Theorem directly by Orbit-Stabiliser.

Now we can state our question from the beginning of this section in a much more succint way.
As we identify two paintings as the same if they are related by a relation, we can take the set of
all possible paintings (which has 6 elements), let Rc act on it, and now ask how many orbits
there are! And here is the result that lets us compute the amount of orbits:

THEOREM 2.11 (Burnside). Let G be a finite group and G ~ X. The amount of orbits of the
action is given by the average amount of elements that a g € G fixes, i.e.

1 2 [Fix(a)l

geG
where Fix(g) ={r € X |g.x ==z}.

ProOOF. Exercise. Try rewriting the sum, and then apply Orbit-Stabiliser. O
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Now let’s find out how many ways there is to paint a cube in three colours. |X|=6%, and |R¢c|=24
by above. Now we classified the elements of R¢ in three different groups plus the identity, it will
make sense to split the face rotations in 3 that rotate by 7 and 6 that rotate by 7.

e The identity fixes every face and thus every painting.

e The face rotations by 7 fix two faces and no others, so fix those paintings which have the
same colour in all 4 not fixed faces, of which there are 33.

e The face rotations by 7 fix two faces and swap the remaining ones in pairs, so fix those
paintings which have the same colours in the opposite non-fixed faces, of which there are
3%

e The edge rotations swap all faces in pairs, so we have free choice of 3 colours, giving 33
fixed colourings.

e The corner rotations only fix paintings that have the same colour in all faces bordering the
corners that the axis passes through. There are 3 faces for such a corner, so we can pick
two colours, giving 32 fixed colourings.

Now applying Burnside we see that the amount of unique colourings is

35433 +6-3°+6-3%4+8-32
24 B

o7.

2.4. ISOMETRIES AND ACTIONS ON METRIC SPACES

Let (X,d,) and (Y,dy) be metric spaces from now on.

DEFINITION 2.12. f: X —Y is called an isometric embedding if for any x,y € X, the equation

dy (f(x), f(y)) = dx (z,y).
If f is also bijective, it is called an isometry. If such an isometry exists, X and Y are isometric.
This definition is very easily motivated — two isometric metric spaces are for all intents and
purposes the same from the viewpoint of their metric.
Exercise 2.4. Prove that every isometric embedding is injective, that is, never maps two different
points to the same one.
Let X be a metric space. We can consider the collection of all isometries from X to itself.
Exercise 2.5. The set of all isometries from X to Y is called Isom(X,Y"). Prove that Isom(X, X)

forms a group under function composition.

For sets, a group action was a homomorphism to the bijections group of the set —i.e. each group
element corresponded to a bijection. For a metric space, we have the same concept, except with
isometries instead of bijections.

DEFINITION 2.13. A group action, or an isometric action of a group G on a metric space X is
a homomorphism «: G — Isom(X, X). We write g.z instead of a(g)(z) if the action is clear.

ExXAMPLE 2.14. The additive group Z acts on the real line by shifting it. To be precise, g.z=z+g¢g
defines a group action.
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2.5. PROBLEMS TO THINK ABOUT

2.1. Prove that GG acts on itself in the following way: Fix a g € G, then g.x =gz.

2.2. Use the above problem to prove Cayley’s theorem. Any finite group G can be realised as a
subgroup of the symmetric group .S,, for some n € N.

2.3. Find all isometries of R. (Hard extra: which group is Isom(R)?)
2.4. Which cyclic groups admit non-trivial isometric actions on R?

2.5 (Very hard). For those who know some topology: Prove that an isometric embedding from
a compact metric space to itself is always an isometry.

3. A METRIC ON GROUPS?

First we should talk a bit about what a graph is. Graphs have probably shown up in a lot of
olympiad questions, but it won’t hurt to look at a proper definition.

DEFINITION 3.1. An undirected simple graph G is a pair (V,E), where V is a set, and F is a
subset of (‘2/), that is, two-element subsets of V. We call V' the vertices of G, and FE the edges.

We imagine G as a collection of points, of which some are connected. Note that in our definition
above, a vertex is never connected to itself.

DEFINITION 3.2. A walk on G is a sequence of vertices, of which two consecutive ones are
connected by an edge. We say it is a walk between the first vertex and the last vertex of the
sequence.

From this point of view, it’s not hard to connect a metric space to a graph. Take the vertices as
the elements of the metric space, and define the distance of two vertices to be the length of the
shortest walk between them, which exists due to well-ordering. The only problem here is that a
walk might not exist — in this case define the distance to be infinite.

DEFINITION 3.3. A graph G=(V,E) is called connected if there is a walk between any pair of
vertices.

Exercise 3.1. The above defined distance function is appropriately called the shortest-path dis-
tance. Prove that for a connected graph, the shortest-path distance turns it into a metric space.

3.1. THE CAYLEY GRAPH

Now comes the fundamental observation connecting the world of groups to the world of metric
spaces. For any group G, given a generating set, we are able to turn it into a graph, and thus
into a metric space. Let us see how.

An important note to make here is that we pick a generating set S for G, and then only are we
able to make this jump, and the result depends heavily on the choice of S. So it is not right to
say that given a group, there is a unique metric space associated to it.

The intuition is as follows — because S is a generating set for G, we can write every possible g€ G
as a finite product of elements from S. Then it is possible to see how some elements are in some
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sense ,close“to others. Namely, if they differ by few multiples of elements in S. So we would say
that s1s9s3 and s1so are very close, while s1s2s3 and s4 aren’t necessarily. Notice that we have
made an arbitrary choice here — we multiply on by the right when considering distance, i.e. we
care if the differing elements of S are on the right. We are now ready to present the definition.

DEFINITION 3.4. Let G be a group and S C G such that (S)=G. Then the Cayley graph
Cay(G,S) of G with respect to S is the graph that has as vertices the elements of G, and for the
edge set we allow (g,h) as an edge if and only if g~1h or its inverse h~1g is in S, and further it
is not the identity.

Why do we make the somewhat awkward distinction in the end about g~k not being the identity?
It is so the following holds.

Exercise 3.2. Given a group G with a generating set S, Cay(G,S) is a simple connected graph.

It would be very useful if the reader would make clear to herself where in this definition the
arbitrary choice of ,measuring distance on the right‘comes in. All of our theory could be developed
in the same way if we measured from the left instead, but we must make the choice one way or
the other, which will lead to some asymmetries — see the next section.

Exercise 3.3. Show that Cay(G,S) is regular, that is, every vertex is in the same amount of
edges.
3.2. THE WORD METRIC

We make the next logical step in our discussion. Now that we have associated a graph to our
group, and a metric to our graph, we close the circle and find a metric for our group.

DEFINITION 3.5. Let G be a group and S C G such that (S) =G. Then the word metric ds on
G with respect to S is the shortest-path distance on Cay(G,S).

Exercise 3.4. Generating sets make a difference!
(i) If G=7Z under addition and S ={1}, what is ds(0,5)?
(if) If G=7Z under addition and S ={2,3}, what is ds(0,5)?

Remember the next theorem well!

THEOREM 3.6. The word metric is left-invariant, that is, for any h € G and ¢1,92 € G we have
that

ds(hgi,hg2) =ds(g1,92)-
PROOF. Left as an exercise but is very easy, just unravel the definitions. O

Note that this is an example of the arbitrary choice we made earlier. If we measured distance
from the left, the metric would have turned out right-invariant.
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3.3. INTERLUDE: END GOAL OF SVARC-MILNOR

In everything that we have done so far, something should stick out as a bit scary. In the beginning
of this course, we promised that we would find a relation between the metric on a group and the
metric on the metric space it acts on. But now we just saw that we don’t have a clearly fixed
metric on a group, it depends on the generating set we pick! How do you think this problem will
be solved in the end?

3.4. PROBLEMS TO THINK ABOUT

3.1. Think about Cayley graphs with few edges.

e Does there exist a group that has a Cayley graph with exactly 2023 vertices and exactly
2024 edges?

e Does there exist a group that has a Cayley graph with exactly 2023 vertices and exactly
2023 edges?

3.2. Show that if G is abelian and not cyclic, Cay(G,S) contains a cycle of length 4.

4. QUASI-ISOMETRY AND BILIPSCHITZ EQUIVALENCE

4.1. DEFINITIONS AND EXAMPLES

DEFINITION 4.1. Let (X,dx) and (Y,dy) be metric spaces, and f: X —Y. We say f is a
bilipschitz embedding if we can find constants k, K € R™ such that Vz,z’' € X the following estimate
holds:

k'dX(Ia‘r/) S dY(f(I)vf(‘r/)) S KdX(Iv‘T,)
In other words, the error generated by the map f is bounded linearly.
DEFINITION 4.2. Let (X,dx) and (Y,dy) be metric spaces, and f: X —Y a bilipschitz embed-

ding. We call it a bilipschitz equivalence if there is an inverse g: X — Y that is also a bilipschitz
embedding.

DEFINITION 4.3. Two metric spaces are called bilipschitz equivalent if there is a bilipschitz
equivalence between them.

The following lemma comes in handy sometimes.
LEMMA 4.4. A bilipschitz embedding is a bilipschitz equivalence if and only if it is bijective.

PROOF. The one direction is trivial as the existance of an inverse implies bijectivity. Now assume
f:X =Y is a bilipschitz embedding that is also bijective, and let g be the inverse that is given
by bijectivity. It remains to prove that g is a bilipschitz embedding. Given two arbitrary y,y' €Y
we have

k-dx(9(y),9(y") <dy(f(9(y), f(9(y))) =dy (y,9)

proving that dx (g(y),9(y')) <1 dy (y,y’), which is the right part of what it means to be a bilipschitz
equivalence. The left side works in exactly the same way. O
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While this concept of a bilipschitz equivalence is good and useful, we will find it a bit too restrictive
for our purposes in future. Here is a different, more liberating idea.

DEFINITION 4.5. Let (X,dx) and (Y,dy) be metric spaces, and f: X —Y. We say f is a quasi-
isometric embedding if we can find constants k, K,m, M € RT such that Vz,z’ € X the following
estimate holds:

k-dx(z,2")+m <dy(f(z), f(2')) <K -dx(x,2")+ M.

In other words, the error generated by the map f is bounded linearly, and may differ by a fixed
constant.

We would like to proceed in the same way as before, but the definition of a quasi-isometry gives
us a few more difficulties. It is overkill to demand the existance of an inverse. As we will see,
quasi-isometries will connect groups and metric spaces of completely different cardinalities and
forcing them to be bijective would make our theory unnecessarily rigid. But nonetheless we want
a sort of inverse to exist, so that we can capture what it means for two metric spaces to be
quasi-isometric, i.e. the relation going in both ways. Thus we come up with the concept of a
quasi-inverse.

DEFINITION 4.6. We say two functions f,g: X —Y have finite distance if there is a fixed constant
¢ € R such that for any = € X it is true that dy (f(x),g9(x)) <c. Then h: X =Y is quasi-inverse
to k:Y — X if both compositions hok and koh have finite distance to their respective identities.

Now we may proceed as before.

DEFINITION 4.7. Let (X,dx) and (Y,dy) be metric spaces, and f: X —Y a quasi-isometric
embedding. We call it a quasi-isometry if there is a quasi-inverse g: X — Y that is also a quasi-
isometric embedding..

DEFINITION 4.8. Two metric spaces are called quasi-isometric if there is a quasi-isometry be-
tween them.

4.2. WORD METRICS ARE BL-EQUIVALENT

It turns out this is exactly the property we need to get control of the many word metrics on a
group. All of them are bilipschitz equivalent!

THEOREM 4.9. Let G be a group, and S,T finite generating sets of G. Then
idg : Cay(G,S) — Cay(G,T)
is a bilipschitz equivalence.

PRrOOF. The identity is bijective and thus by Lemma[£.4]it suffices to show that it is a bilipschitz
embedding. Take any g,h € G. If ds(g,h) =n, then we can write by the definition that

hlg=s1s9-- 5,

where these are elements of S. We want to now show that the distance of g and h with respect
to the generating set T' is bounded by a constant times n. Applying the triangle inequality for
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metrics gives

dr(g,h)=dr(h " g,1c) =dr(s152-*$n, 1c)
<dp(lg,s1)+dr(s1,5152)+...+dr(s152-+-Sp_1,5152---5p)
:dT(lg,Sl)-i-dT(lg,SQ)-l—...—i—dT(lg,sn).

There are n terms in this sum, but what constant can we pick to bound them all? Well, just take
C:=maxsecsdr(lg,s). As S is a finite generating set, this maximum exists, and we get

dr(g,h) <C-n=C-dg(g,h).

This is again just the right part of the definition of a bilipschitz equivalence, but swapping S and
T in the above argument gives the left part. O

It really cannot be stressed how important it is to remember that the finiteness of S and T is
what makes all of this work. The above theorem does not hold in the case of infinite generating
sets. This is why in geometric group theory, we mostly only ever talk about finitely generated
groups.

4.3. IMPORTANT PROPERTIES

Try and prove the next two theorems by yourself. They should be a bit long, but not particularly
hard.

THEOREM 4.10. Every isometry is a bilipschitz equivalence, and every bilipschitz equivalence
is a quasi-isometry.

THEOREM 4.11. Being quasi-isometric is an equivalence relation on the set of all metric spaces,
and so is being bilipschitz equivalent.

4.4. NON-PROPERTIES

You should be careful with assumptions — isometries have many nice properties that quasi-
isometries do not.

Exercise 4.1. Show that a quasi-isometry doesn’t have to be
(i) injective

(ii) surjective

(iii) continuous

(iv) dimension-preserving.

4.5. QUASI-DENSE IMAGE AND QUASI-INVERSES
We had a nice little lemma that made our life easier when proving that something was a bilipschitz

equivalence, namely Lemma[f.4] We would like a corresponding version for quasi-isometries, and
there is one. First we prepare with the following definition and lemma.
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DEFINITION 4.12. Let X be a metric space and D C X. Then we say D is quasi-dense in X if
there is a constant K € R such that every point in X has at most distance K to D, or in other
words

dK eR:Vze XFye D :dx(z,y) < K.

LEMMA 4.13. Assuming the axiom of choice, a function having quasi-dense image is equivalent
to it having a quasi-inverse.

Proovr. This is a fun exercise. Try doing it yourself! O

THEOREM 4.14. A quasi-isometric embedding f: X —Y is a quasi-isometry if and only if it has
quasi-dense image.

PROOF. By the lemma, one direction is trivial. Now let f: X —Y be a quasi-isometric embedding
with quasi-dense image. Again invoke the lemma to get a g:Y — X that is quasi-inverse to f. It
remains to prove that g is a quasi-isometric embedding. Pick arbitrary y,y’ € Y. As f and g are
quasi-inverses, fog has finite distance to the identity. To be precise, there exists a C' € R with
the property that any expression of the form dx (f(g(z)),z) is bounded by C. So we get

k-dy(9(y),9(y"))+m <dy(f(9(v)), f(9(y)))
<dy (f(9()),y) +dy (y,9") +dy (¥, f9(¥)))
<dy(y,y')+2C

which rearranges to a linear upper bound on dy (¢(y),g(y')). The lower bound again works anal-
ogously. O

4.6. PROBLEMS TO THINK ABOUT

The problems here have an olympiad feel, so have fun trying to solve them!
4.1. Prove that N and Z under the inherited metric from R are not quasi-isomorphic.
4.2. Prove that R and R? are not quasi-isomorphic.

4.3. Find counterexamples to show that quasi-isometry does not imply bilipschitz equivalence,
and bilipschitz equivalence does not imply isometry.

4.4. Is it true that every bijective quasi-isometry is a bilipschitz equivalence? Is this true for
word metrics?

4.5. When are finite groups quasi-isometric?

5. QUASI-GEODESIC SPACES

The next section is only tangentially related to what came before, but you will notice parallels
between the ideas. We shift our focus from maps between metric spaces to the metric space itself.
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5.1. DEFINITION AND EXAMPLES

It turns out that in the Svarc-Milnor lemma we will require the metric space to be a bit more
special than just any metric space, namely it should also be a quasi-geodesic space. First, let’s
see what a regular geodesic space is. This definition is motivated by the idea of straight lines in
the plane — these are lines that are isometric embeddings of real intervals.

DEFINITION 5.1. Given a metric space X, a geodesic is an isometric embedding ¢: [0, L] — X.
We say it is a geodesic between ¢(0) and ¢(L).

Take some time to understand this definition. A geodesic is a line connecting two points that
is in some sense the shortest possible path between them, and simultaneously for every point in
between as well. What do you think are geodesics on a sphere, for example?

DEFINITION 5.2. A geodesic space is a metric space in which any two points are connected by
a geodesic.

EXAMPLE 5.3. Show that R?\{0} is not a geodesic space.

Now that we have a good sense of what a geodesic space is, we extend our definition to quasi-
geodesic spaces, which is exactly what you expected.

DEFINITION 5.4. Given a metric space X, a quasi-geodesic is a quasi-isometric embedding
¢:[0,L]— X. We will often call it a (k,m, K, M )-quasi-geodesic if we want to specify the constants
in the definition of a quasi-isometric embedding. (Definition [4.5])

DEFINITION 5.5. A (k,m, K, M)-quasi-geodesic space is a metric space in which any two points
are connected by a (k,m, K, M)-quasi-geodesic. If we don’t want to specify the constants, we can
also just call it a quasi-geodesic space.

5.2. PROBLEMS TO THINK ABOUT

5.1. Show that R?\{0} is a quasi-geodesic space, but not a geodesic space.

5.2. Show that the shortest-path metric on a graph (and thus the word metric on a group)
transforms it into a quasi-geodesic space.

5.3. Let f: X =Y be a quasi-isometry.

o If X is geodesic, is Y also geodesic?

o If X is quasi-geodesic, Y also quasi-geodesic?

6. THE SVARC-MILNOR LEMMA

Slowly but surely we are ready to state and prove the Svarc-Milnor lemma. In short, we will have
an isometric action of a group on a quasi-geodesic space with some conditions, which will imply
the quasi-isometry of the group and the space.
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6.1. STATEMENT AND PROOF

For easiness of notation, for a subspace S C X of a metric space we will write B.(S):={z€ X |3s€
S:dx(s,x)<c}.

THEOREM 6.1 (Svarc-Milnor). Let G be a group that isometrically acts on a (k,m, K, M)-quasi-
geodesic space. Further let there exist a finite diameter subspace B C X such that

() Uyeg9-B=X.
(if) B’ = Bap(B) has the property that

S={geG|g.B'NnB #0}

is finite.

Then S generates G (finitely!) and G equipped with the word metric with respect to S is quasi-
isometric to X via the following quasi-isometry:

v:G—X
g g.x

where x € X is arbitrarily chosen.

PROOF. We prove the claims one after the other.

Step 1: (S)=G.

Let g € G, and pick any z € X. We will now provide a way of writing g as a product of elements
of S. We use the quasi-geodesic property by considering a quasi-geodesic between x and g.z. This
is nothing else but a (k,m, K, M)-quasi-isometric embedding ¢ of [0, L] such that ¢(0) =z and
@(L)=g.z. The trick is now to dissect this quasigeodesic into many small parts. In particular, we
dissect it into n parts with % < %, i.e. each part being smaller than % Now label the dissection
xg to x,,. We now have a bound on the distance between x;_; and z;, where in the following i is
an arbitrary integer with 1 <1 <n.

Claim: dx(z;—1,2;) <2M.

This is proven quickly using the properties of quasi-isometry.

M
dX(xi,l,xi) SK'dx(¢_1($i,1),¢_1(xi))+MSK- ?—l—M:QM.

Now since g.B cover the whole space (see (i) in the theorem) we can find g; € G such that x; € g;. B.
We now realise that g;.B and g;_1.B are very close. By left-invariance of the word metric, this
means B and gi__llgi.B are close. To be more clear, z; is in both g;.B as well as in 2M distance
of g;_1.B. Using the notation B’ as above, this means z; is both ¢;.B’ as well as in ¢g; _1.B’, and
thus applying g; ', gives that there is an element (namely g;"!;.x) that is in both B’ as well as
in 9;119i~B/~ But by the definition of S this implies that g;llgi € S. To finish this step off, write
(noting that go =1¢ and g, =g)

9=9n=(95"91)(91 "92) -+ (g, 1.9n),

all of which by above are elements of S.
Step 2: 1 is a quasi-isometric embedding.
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By left-invariance of the word metric it suffices to prove the bounds for dx (¢(1g),d(g)) (Why?).
Note that above we picked n such that n> L- % Picking it sharply also provides n—1< L- %,
thus implying

dx(¢(1a),d(9)) =dx (x,9.2) > k-L+m
(n=)M

>Ek.
>k e

‘k+m

which is linear in n, and by definition we have n > dg(1¢g,g). This is the lower bound, and the
upper bound is dx (¢(1g),¢(9)) <C-ds(lg,g) where C is the maximum of all expressions of the
form dx(z,s.xz) in a fashion similar to when we proved that all word metrics on a group are
bilipschitz equivalent. This follows from a brief induction argument over dg(1,g). If it is zero,
g=1 and we are done. If it is n, write g=s155---s, and let h =s155-s,_1. Then the statement
is true for h, and we get

x,g.x) =dx(x,h.x)+dx(h.x,gx)=
x,h.x)+dx(z,sp.2)<(n—1)-C+C

Step 3: ¥ has quasi-dense image.

Let y € X. By (i) we have y € g.B. Again by (i) we can take x € h.B. But then ¢(gh~')=gh~'.2
is also in ¢.B, so the maximum distance y can have from it is the diameter of B, which is finite
by assumption.

Step 2 and 3 taken together imply by Lemma [I.14] that ¢ is a quasi-isometry, thus proving the
Svarc-Milnor lemma. O

6.2. APPLICATION TO Z AND R

Let’s immediately see how this can be applied. Recalling Example there is an isometric
action of Z on R. As R is a geodesic space and thus a quasi-geodesic space, we have a chance of
applying Svarc-Milnor. We need a suitable choice for B, and we guess that [0,1] might work. It
obviously has finite diameter, and B’ = B, is just another closed interval which has the property
that for only finitely many x € Z there is an intersection of B’ with its shift by z. Thus we can
apply Svarc-Milnor, and we see that Z and R are quasi-isometric.

7. *TOPOLOGICAL STATEMENT OF THE SVARC-MILNOR LEMMA*

This section requires a good understanding of point-set topology and is entirely optional. If you
look up the Svarc-Milnor Lemma online, it is likely you will find something completely different
to what we wrote above. It might look more like this:

THEOREM 7.1 (Svarc-Milnor, topological version). Let G be a group that isometrically acts on
a proper quasi-geodesic space X, such that the action is properly discontinuous and cocompact.
Then G is finitely generated and G under any word metric and X are quasi-isometric.

We will now go through each unknown word in this theorem and define them.

DEFINITION 7.2. A proper metric space is one in which every closed ball is compact.
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Exercise 7.1. Show that proper metric spaces are exactly those in which the Heine-Borel theorem
holds (every closed and bounded set is compact).

DEFINITION 7.3. A properly discontinuous action of G on X is one in which for every compact
subset K C X the set {g€ G| g. KNK # 0} is finite.

Recall that we can quotient a metric space by a group action by collapsing the orbits.

DEFINITION 7.4. A co-compact action of G on X is one in which the quotient space % is

compact.

As we have already proved the non-topological version, what we want to do in this section is
show that the assumptions of the non-topological version of Svarc-Milnor are fulfilled under the
assumptions of the topological version. We start with two small lemmas.

LEMMA 7.5. The quotient map ¢: X — % under an isometric action is open.

ProOF. Given an open set U C X, we want to show that ¢(U) is open. Equivalently, ¢~ (q(U))
is open. This is not equal to U, but in fact is equal to the union of all elements which map to the
same ones as those in U, so in other words the union of all orbits of the elements in U, so

¢ qU)=JgU

geG

But as G acts via isometries which are open (their inverse is also an isometry, which is continuous),
each set ¢.U is open. The union of open sets is also open, and we are done. O

LEMMA 7.6. Proper metric spaces are locally compact.

ProOOF. We need to show that every point has a compact neighbourhood. But we can just take
any closed ball with non-zero radius centered at the point and are done (the open ball with half
the radius proves that it is a neighbourhood). O

Glancing at our non-topological version, the only thing we need to actually do is provide a finite
diameter subspace of X that fulfills the two conditions. As our action is properly discontinuous
and the space is proper, picking B compact will already give us (ii) as well as finite diameter. It
remains to show that there exists a compact B with the property that J gec 9-B=X. We claim
that it suffices to consider a locally compact space, which X is by Lemma [7.6]

THEOREM 7.7. Let X be a locally compact space, and G a group acting on X. This action
being co-compact is equivalent to the existance of a compact subspace B C X with the property
that U,cq9.B=X.

PROOF. Let us first prove the backwards direction, which is the one we don’t actually need for
our goal of reducing the topological statement to the non-topological one. Given such a compact
subspace B, we wish to show that G ~ X is co-compact, i.e. % is compact. Let ¢: X — % be the
quotient map, and U; an arbitrary open cover of % As quotient maps are always continuous, the
pre-images ¢~ !(U;) give an open cover of X and thus also of B. As B is compact, we get a finite
open cover qil(UZ-j) of B. But the property of the g.B covering X means that every element of
% has a pre-image in B, proving that the U;; are in fact a finite open cover of %

It now remains to prove the forwards direction. We are given that the action is co-compact,
and we must now conjure up a compact B that fulfills the condition. We claim the following
construction works:
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e Pick x; € X as representatives for each orbit of the group action of G on X.

e By local compactness, pick a K; as a compact neighbourhood of each z;.

e Let K, be a suitably chosen finite subset of the K such that Uj q(K;,) covers %
e Set B:UjKij~

That B fulfills the property of g.B covering all of X is clear by construction. Also, B is compact

because it is the union of finitely many compact sets. It remains to show that the third step is

possible, i.e. we can actually pick a finite subset of the K; such that they cover % To construct

one, consider the q(K?), where A° designates the interior (the union of all open sets within) of
A. These are all open sets as ¢ is open by Lemma and they cover % By compactness we pick
a finite subcover, and it is precisely these K, which fulfill the required properties. O

7.1. PROBLEMS TO THINK ABOUT

7.1. Show that every proper metric space is complete.

7.2. Show that the word metric turns a group into a proper metric space.
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