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Abstract

This report was written at the end of a summer research placement from 26.06.2021-25.08.2021 super-

vised by Emmanuel Breuillard at the Department of Pure Mathematics and Mathematical Statistics at

the University of Cambridge. We summarise known results about natural algorithmic decision problems

arising in group theory with a focus on linear groups, and further we are able to prove a few new results

about some of them as well as ask new questions.

1 Introduction

The general motive of this article is to discuss known undecidability results about problems concerning
semigroups, and to think about how to generalise them to groups. It turns out that this problem, even
though it is intuitively similar to the semigroup one, is mostly much, much harder and when a solution is
known, it is won through a vastly di�erent approach. We will consider mainly the word problem and the
freeness problem as well as other minor problems such as the orbit, conjugacy, order or membership problem
and others. We hope to cleanly summarise known results, to provide a few new perspectives on some of them
as well as present some new ideas.

2 Notation and de�nitions

We use the letters Σ and ∆ to denote alphabets. The Kleene star Σ∗ refers to all words we can write using
the letters in Σ, including the empty word ε. We interpret this as being the free monoid generated by the
letters in Σ. For the semigroup (i.e. without the identity) we write Σ+.If we want to discuss the group
alphabet using the letters in Σ and there inverses, we denote this as 〈Σ〉, which can be seen as shorthand for
(Σ∪Σ−1 ∪ {ε})∗ or similarly as before, the free group generated by the letters in Σ. In general if we want to
speak about a free group of rank n we use the notation Fn.
〈Σ〉 only contains freely reduced words, which means that there is no occurrence of a letter followed by its
inverse. A similar notion to this is that of a cyclically reduced word, which means that cyclic permutations
do not shorten the word, or equivalently that we cannot conjugate the word to a shorter one.
The length of a word w in any semigroup or group is denoted |w|.

3 Undecidability and basic undecidable problems

We pick Turing machines as the model for computation that will be used in the rest of the article. We use
the standard notions of Turing machine and undecidability laid out for example in Chapter 12 of [33]. We
take it as a given that there exists an enumeration of all Turing machines Ti.

De�nition 3.1. A subset S ⊆ N is called recursively enumerable (r.e.) or listable if there exists a Turing
machine which will print out only numbers of S and ∀s ∈ S, it will eventually print out s.

De�nition 3.2. A subset S ⊆ N is called computable or recursive if there exists a Turing machine which,
given an n ∈ N will correctly determine whether or not n ∈ S.

Theorem 3.3. S ⊆ N is computable if and only if S and N\S are recursive.

Proof. The implication is clear. For the converse, consider a n ∈ N. Run the listing algorithms for S and
N\S in parallel. Since either n ∈ S or n 6∈ S, one will halt in �nite time, giving a correct answer.
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The halting problem, i.e., is it possible to �nd a Turing machine which will correctly predict if a given Turing
machine on a given input will halt, was the �rst problem to be shown to be undecidable by Turing in 1938[36].
We sketch a proof given in [33].

Theorem 3.4. The halting problem is undecidable.

Proof. By contradiction. If it were decidable, then S = {n ∈ N | Tn halts on input n} is computable. By
Theorem 3.3, S′ = N\S would be listable. Take a Turing machine T ′ listing this set, i.e. one which will
halt if it gets an input in S′ and not if not. Since T ′ = Tm for some m ∈ N, we have that if T ′ halts on m,
then m 6∈ S, so it doesn't, but if it doesn't halt on m, then m ∈ S and T ′ would have had to halt on m, a
contradiction.

Obviously, the halting problem is not a very natural setting for most combinatorial and algebraic decision
problems. A helpful other undecidable problem is the so called word problem for an algebraic structure.

De�nition 3.5. A solution to the word problem for a semigroup S = 〈s1, . . . , sn| u1 = v1, . . . , um = vm〉 is an
algorithm that, given any two words w1, w2 in the generators, will correctly determine if they are equivalent
in S or not.

Turing was also able to show the following in [37].

Theorem 3.6. There exists a �nitely presented semigroup with unsolvable word problem.

A more modern and accessible proof can be found in Theorem 12.5 of [33]. Obviously, we can ask the same
question for groups. This turns out to be much more di�cult, but still true.

De�nition 3.7. A solution to the word problem for a group G = 〈g1, . . . , gn| r1, . . . , rm〉 is an algorithm
that, given any w in the generators, will correctly determine if w = eS in S or not.

Theorem 3.8 (Novikov-Boone Theorem). There exists a �nitely presented group with unsolvable word
problem.[33]

Remark 3.9. The reason why we require the (semi)group to be �nitely presented is that it turns out to be
quite easy to construct an in�nitely presented group with unsolvable word problem. If K is any non-recursive
subset of the naturals, then

G = 〈a, b|b−kabk, k ∈ K〉

has unsolvable word problem.

In fact, in light of the following theorem the Novikov-Boone Theorem becomes an easy corollary by embedding
G in the given group:

Theorem 3.10 (Higman's embedding theorem). Any �nitely generated and recursively presented group
embeds in a �nitely presented group.

We will use the unsolvability of the semigroup word problem to prove the undecidability of the Post corre-
spondence problem (PCP), which is the undecidable problem we will reduce most results in this report to.
For now we will only consider the PCP over a free semigroup.
We can picture an instance of the PCP as a �nite set of dominoes, with each of them having (di�erent) words
in a �nite alphabet ∆ written on the top and the bottom. Provided an in�nite supply of these dominoes, the
PCP asks for an algorithm which will determine if there exists a string of dominoes which, laid out next to
each other, spell out the same word on the top and the bottom. More formally:

De�nition 3.11 (Post correspondence problem). Let Σ and ∆ be two �nite alphabets. A solution to the
PCP is an algorithm, that given two morphisms h, g : Σ → ∆ decides whether or not there exists a w ∈ Σ∗

with h(w) = g(w).

Remark 3.12. PCP over a free semigroup means that the letters do not cancel and we do not allow inverses.
If we mention the PCP without mentioning any algebraic structure, we mean the PCP over a free semigroup.
We will discuss variants in more detail later.

In general we can prove the undecidability of a problem by reducing it to a known undecidable problem, i.e.
we show that if the problem were decidable, we could use the algorithm to construct an algorithm solving an
undecidable problem.
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Theorem 3.13. The PCP is undecidable.

The original proof is given by Post in [30]. Another proof is in [34]. The proof recounted here is the simplest
we could �nd, in [24]

Proof. Assume an algorithm for PCP exists, and we want to decide if x = y in S = 〈x1, . . . , xn|u1 =
v1, . . . , um = vm〉. We use the notation given in the de�nition of the PCP.
Pick ∆ = {x1, . . . , xn, x

′
1, . . . , x

′
n, I} with 2n + 1 letters, and have Σ = {a1, . . . , an, b1, . . . , bn, c1, . . . cm, s, e}

have 2 + 2n+m letters.
Now de�ne the morphisms h and g as follows:

h : Σ∗ → ∆∗ g : Σ∗ → ∆∗

ai 7→ xi ai 7→ x′i

bi 7→ x′i bi 7→ xi

ci 7→ v′i ci 7→ ui

s 7→ Ix s 7→ I

e 7→ I e 7→ yI

We imagine s and e as the starting and ending letters - we see that any word with h(w) = g(w) must start
with s. But h(s) is longer than g(s), so we must �ll up the word with letters of the form ai, bi, ci to get a
word spelt out in the image of g that is equal to x in S, where we might have used relations via the ci. But
then we have a copy of this word, primed, in the image of h. If the PCP has a solution, continuing like this,
since we have to end with the letter e, gives a series of reductions from x to y and vice versa.

Note

The 'vice versa' at the end of the proof is crucial. If this were not true, it could be that our algorithm
for the PCP outputs 'no', but there still exists a solution to the semigroup word problem.

Remark 3.14. An easy restriction to the PCP is to ask about the number of letters we allow in Σ and ∆.
The meaning of this in the domino interpretation is that n = |Σ| is the amount of dominoes while m = |∆| is
the amount of letters we can use when writing on them. We will soon see that it is easy to �x m = 2 without
changing the argument (obviously the problem becomes decidable for m = 1.)
As for n, it has been shown that the PCP remains undecidable for n ≥ 5 [27] but becomes decidable for
n ≤ 2 [11]. The values in between remain open problems.

De�nition 3.15. The generalised PCP (GPCP) is the question whether or not, given in addition to (h, g)
4 words a1, b1, a2, b2 whether or not there exists w ∈ Σ+ with a1h(w)b1 = a2g(w)b2.

Obviously the GPCP remains undecidable as it reduces to the PCP by setting a1 = b1 = a2 = b2 = 1.

4 Freeness problems

This is one of the main decision problems we will consider in the report. A very good reference is [8], which
we will be quoting frequently.

De�nition 4.1. A solution to the freeness problem on a (semi)group G is an algorithm, that, given a set of
k elements S ⊆ G correctly decides whether or not they generate a free (semi)group of rank k.

4.1 Basic freeness problems on free structures

We are especially interested in the freeness problem on matrix (semi)groups. Before we think about these,
we will summarise a few known important results. We will see that it is possible to embed direct products
of free semigroups and groups into certain matrix groups, which obviously preserves the solvability of many
decision problems - so it is clear that it might be interesting to �rst investigate the freeness problem on free
(semi)groups.
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Firstly, notice that we can always assume that we are speaking about the free (semi)group on two generators.
This is because there exist embeddings of this group into the free (semi)group on n ≥ 2 generators and vice
versa.

Lemma 4.2. We can embed the free semigroup on n ≥ 2 generators into the one on two generators, say
{a, b}∗.

Proof. For any k ∈ N we have that for S = {aib, 1 ≤ i ≤ k} that S+ is a free semigroup of rank k. (it is what
we call a pre�x code, see Remark 4.5 - given a word, we can immediately uniquely tell which element of S it
started with since no element is a pre�x of another)

Lemma 4.3. We can embed the free group Fn for n ≥ 2 into F2.

Proof. Remembering Remark 3.9 we are done since

Gk = 〈b−iabi, 1 ≤ i ≤ k〉

generates a free group.

Note that in both cases we can also get the free group on countably in�nitely many generators as a subgroup.

Theorem 4.4 (Sardinas-Patterson algorithm, 1953). The freeness problem on free semigroups is decidable.

This is one of the main results of Chapter 4 in [35]. After a de�nition we recount the algorithm, but we will
not provide the proof of its correctness.

Remark 4.5. A set of k elements of a free semigroup Σ+ spanning a free semigroup of rank k is usually
called a code. This is because an alternative de�nition is the following: S ⊆ Σ+ is a code if for any xi ∈ S,
we have

xi1xi2 . . . xin = xj1xj2 . . . xjm ⇔ n = m,xik = xjk .

In particular this means that given a word in Σ+, we can uniquely 'decode' it into the elements of S which
formed it. The classical reference for code theory is [3], from where the bottom examples come from.

Example

(i) {aa, ba, baa} is a code (check this!).

(ii) {a, ab, ba} is not a code since (a)(ba) = (ab)(a).

The Sardinas-Patterson algorithm operates by transforming the given set of words iteratively, namely by
forming the new set of words that are su�x of a word x in the previous set formed by this su�x and a word
in the original set y or vice versa. Concisely, if we want to investigate whether or not S is a code, we form
the sets

S0 = S

Si+1 = {w| xw = y ∨ yw = x, x ∈ S, y ∈ Si+1}

Since the length of the words in the sets is bounded by the length of the words in S, the Si have to start
looping at some point - if every Si ∩ S is empty, then S is a code, and if not, then not. As said, a proof can
be found in [35].
So we have solved the freeness problem for semigroups.
The problem for free groups is also solvable, but this time via a completely di�erent, almost topological
approach. Firstly the following theorem must be mentioned.

Theorem 4.6 (Nielsen-Schreier). Any subgroup of a free group is free.

The following ideas all stem from [15].
We can associate any �nitely generated subgroup of a free group 〈H〉 ≤ Fn with a �nite labeled directed
graph XH that is folded, by this we mean that no vertex has two edges with the same label that are either
both heading outwards from or towards the vertex. We get this graph by following the following procedure:
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1. Add a base vertex v.

2. For each generating word w = a1 ·an ∈ H, add a wedge with an edge heading outwards to a new vertex
labelled with each standard generating element ai of Fn and inwards for an inverse element (but still
labelled with the corresponding positive element), looping back around to v.

3. Fold the graph by 'pushing' together two vertices that are connected to the same vertex via an edge
that is labelled the same and points in the same direction. Repeat until it is folded.

This is a very intuitive and informal explanation. For details see [15], from which also the following illustration
is taken.

Figure 1: The above procedure applied to H = 〈ab, ba−1ba, a−1ba〉 ≤ F2.

The subgroup H can be found in its original directed graph as the group of paths beginning and ending at
v, but these words are not necessarily freely reduced. We can check (again see [15] for details) that a folded
graph has the following properties:

� The group of paths beginning and ending at v remains the same as it was in the original directed graph.

� The words spelt out are freely reduced.

� it is the union of all reduced paths (i.e. we never use the same edge forwards and backwards consecu-
tively) from v to v.

In the light of these we see how the algorithm must work. We generate this folded graph from the given
generators of H, and then try to calculate the rank of the group of paths beginning and ending at v. The
latter part works by �nding a spanning tree of the folded graph and then counting the amount of 'loops', i.e.
edges which are outside of it.

Claim 4.7. The set of shortest paths from v to v using the edges not in the spanning tree (in a positive
sense, i.e. traversing them in the direction they point) outside of the graph freely generates H.

Proof. Obviously we must prove this in two parts - �rst we show that they generate H, then that they admit
no relation in between them. We start with the �rst part.
We claim �rst that H is generated by all paths pe for every edge e, where pe is precisely the path going from
v to v via the quickest route using (in a positive sense) the edge e. Pick h ∈ H, which is a path which can be
written as a sequence of edges beginning and ending at v, and traversing the vertices v, v1, v2, . . . , vn, v. Now
notice that if e0 is the edge between v and v1, and e1 the edge between v1 and v2 and so on, we can write
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the path as pe0 · · · pen .
Now we show that these paths are independent, i.e. that no nontrivial combination of them and their inverses
that is freely reduced can give the identity.. Let h = pe1 · · · pen , where the ei are edges outside of the tree and
h is not trivially freely unreduced, i.e. ei 6= ei+1. We can freely reduce this to the path going to the origin
of e1, then over e1 to the target vertex, then via the tree to the origin of e2 and so on. We claim that this
word is already completely freely reduced - this is because if not, since the graph is folded, we would have
that we traversed an edge forwards and backwards consecutively, a contradiction to ei 6= ei+1. So we have a
nontrivial reduced path and thus a nontrivial reduced word in H.

So the amount of these edges is the rank of H. Equivalently, since every �nite graph has a spanning tree, we
can just calculate the Euler characteristic χ of the folded graph to calculate the rank of H � it would just be
1− χ.

4.2 Matrix semigroup freeness

When trying to prove results about matrices the method that is mostly used is a clever embedding attributed
to Paterson [12]. If Σ = {a1, · · · an} is a �nite alphabet, we can consider the reverse n−ary representation of
a word in Σ+ :

σ(ai1 · · · aik) =
k∑
j=1

ijn
k−j

Then it is easy to check that

γ : Σ+ × Σ+ → N3×3

(u, v) 7→

n|u| 0 0
0 n|v| 0

σ(u) σ(v) 1


is an injective homomorphism. Given this tool many decision questions about matrix semigroups reduce to
problems over the direct product of two free semigroups � such as the freeness problem. In the following we
will prove that the freeness problem for this direct product is undecidable. Our observations at the beginning
of this chapter show that it is equivalent whether or not we regard the free (semigroup) on 2 generators or
more. A �rst attempt to prove this leads to an interesting variant of the PCP. In the following write W as
the free semigroup on the two generators a and b.
Our target is to reduce the freeness problem on W × W to the PCP on n letters. Given an instance
h, g : Σ+ → ∆+, regard the subset S of Σ+ × Σ+ given by

S := {(a, h(a))| a ∈ Σ} ∪ {(a, g(a))| a ∈ Σ}. (�)

It turns out that this is not quite enough (yet), since a relation in S implies that there exists a word
w = a1 · · · an ∈ Σ+ with the property that there exist hi, gi, 1 ≤ i ≤ n with not all hi = gi so that

h1(a1) · · ·hn(an) = g1(a1) · · · gn(an).

We call deciding exactly this the Mixed Modi�cation of the PCP, or MMPCP for short.
Now follows exactly the theorem that we would expect.

Theorem 4.8. MMPCP is undecidable. [8] [7]

Proof. This proof will fall into more or less two parts. In the �rst part we de�ne so called Claus instances,
which are a speci�c constraint on a regular instance of the PCP and show that the PCP and the MMPCP
are equivalent on these instances. After this, we can show that if the PCP is decidable on Claus instances,
it is decidable everywhere, hence showing that MMPCP is undecidable on Claus instances and hence also
everywhere.
The de�nition of the Claus instances is quite unintuitive, though we will try to explain every step. These
instances are de�ned based on a given instance (h, g) of the PCP with morphisms h, g : Σ+ → ∆+ on two
more letters, which we call d and e in addition to the letters in Σ.
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Pick a letter a ∈ Σ. The morphisms ha, ga : (Σ ∪ {d, e})+ → (∆ ∪ {c, d, e})+ are called the corresponding
a−Claus instances to h, g if

ha(x) = l(h(x)) ga(x) = r(g(x)), x ∈ Σ

ha(d) = cl(h(a)) ga(d) = cdr(g(a))

ha(e) = de ga(e) = e

The morphisms l and r plant the letter d in between every letter and to the left or to the right of the word,
respectively (i.e. r(aba) = adbdbd, l(aa) = dada). For intuition: The reason for this is so that given a word
with a d between every letter that is cut o� at a certain place, we can uniquely determine if the letter that
follows must be mapped to by ha or by ga. The details will become clear in due course. c and e are to be
regarded as starting and ending a shortest solution � concisely:

Claim. The shortest solution (to be understood as it is locally shortest, i.e. any solution can be shortened
to one of this form and no further) to the MMPCP on Claus instances is of the form dwe where w ∈ Σ+.

Proof. Notice that w does not contain d or e. Assume w is a shortest solution and w = a1a2 . . . ak where
ai = e.

h1(a1) · · ·hk(ak) = g1(a1) · · · gk(ak) (4.1)

from the condition. Now since the h and g preserve the amount of e's in a word and the equivalence above
gives h1(a1) · · ·hi(ai) ⊆ g1(a1) · · · gi(ai) or vice versa but both words end in e, we see that we must in fact
have h1(a1) · · ·hi(ai) = g1(a1) · · · gi(ai). This is a shorter solution, hence a contradiction unless i = k. We
can give exactly the same argument with d at the beginning and c instead of e.

Claim. If dwe,w ∈ Σ+ is a shortest solution to the MMPCP on a Claus instance, then w is a solution to
the PCP on the same Claus instance (and obviously vice versa).

Proof. We claim that we can always set hi = h and gi = g for all i. W.l.o.g. assume that h1 6= g1. Also
w.l.o.g. assume that h1 = h and g1 = g. To see the claim we pick the minimum i+ 1 so that hi+1 6= h1 and
the minimum j + 1 so that gj+1 6= g1. Now because of (4.1) we see that h(a1 · · · ai) ⊆ g(a1 · · · aj) or vice
versa. We can assume that the latter is a strict subsequence since else we would have to have ai = aj = e
and thus i = j = k.
This is where our comment about the morphisms l and r comes in. g(w) has the property that there is a d
between any two letters. h(w) never ends in a d though, so since h(a1 · · · ai) ⊆ g(a1 · · · aj) it must continue
with a d, i.e. hi+1(ai+1) must start with a d. This is only possible though if hi+1 = h, which is in contradiction
to our conditions - so in fact all hi are h and all gi are g, and dwe solves the PCP.´

What we have shown so far is that if the MMPCP were decidable, the PCP would be decidable on Claus
instances. But this already �nishes o� the problem since the latter implies the decidability of the PCP in
general. This is because if a solution exists, then a shortest solution dwe exists and we see that

ha(dwe) = ga(dwe)

⇔ cl(h(a))l(h(w))de = cdr(g(a))r(g(x))e

⇔ l(h(aw))d = dr(g(aw))

⇔ h(aw) = g(aw)

so if MMPCP was decidable, we could decide PCP by checking for a solution on every a-Claus instance of
(h, g) for every letter a ∈ Σ.

Given our remark before Theorem 4.8, we get following corollary.

Corollary 4.9. The freeness problem is undecidable for 3 × 3 matrix semigroups generated by sets of 10
elements.

Proof. Looking at the encoding in (†), we require 2n elements for undecidability where n is the amount of
letters that the PCP is undecidable on.
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Remark 4.10. A clever trick is employed in Theorem 7.18. of [8] to get this number down to 2n − 1, i.e.
in our case 9 matrices. Note that in this paper the result of undecidability of PCP on 5 letters was not yet
known.

For 2× 2-matrices the problem is open. We will now consider a special case which has been open for a very
long time. [16]

4.3 The Lyndon-Ullman problem

De�nition 4.11. The Lyndon-Ullman-problem asks for which r ∈ C the matrices(
1 r
0 1

)
,

(
1 0
r 1

)
generate a free (semi)group.

The original question asks for the group they generate, but no complete results are known for either. We will
concentrate on this version. It is easy to see that we can only regard algebraic numbers since transcendental
numbers will always generate free structures as any relation will give a polynomial equation in r. We can
show that for |r| ≥ 2, we also always get a free group. Call the set of r giving a free group Λ.

Theorem 4.12 (Ping-pong lemma). Let {h1, . . . , hk} ⊆ H for a group H acting on a set X. If X has disjoint
subsets X1, . . . , Xk for which hmi maps Xi into other Xj with i 6= j ∀m 6= 0, then 〈h1, . . . , hk〉 ∼= Fk. [9]

The intuition behind this is that (picking for instance k = 2) we will have two sets that our two group
elements send set elements between (hence the name). This ensures that no word written in them can �x an
element in one of the sets and so cannot be the identity.

Proof. Given a freely reduced word h
ai1
i1
h
ai2
i2
· · ·hainin ∈ 〈h1, . . . , hk〉, we write it as h

ai1
i1
h
ai2
i2
· · ·hinhai1 , where a

can also be 0. Now if this is the identity, we can conjugate it and it will still remain the identity. Conjugate
by a power of hi1 so that both ai1 and a are nonzero. Then this cannot be the identity though, since any
element in Xi1 will be mapped between the Xi until the last element, namely a power of hi1 , maps it outside
of Xi1 . So the group elements acts on an element of X nontrivially, hence cannot be the identity.

Theorem 4.13. If |r| ≥ 2, then r ∈ Λ.

Proof. Use the ping-pong lemma. Can check that picking the sets

X1 = {
(
x
y

)
| |x| < |y|}, X2 = {

(
x
y

)
| |x| > |y|}

ful�lls the conditions for h1 =

(
1 2
0 1

)
, h2 =

(
1 0
2 1

)
.

Also an interesting result is the following.

Theorem 4.14. Λ ∩A lies dense in the plane, where A is the set of algebraic complex numbers.

Proof. This is clear for |r| ≥ 2. Now notice that if r has an algebraic conjugate (i.e. a root of its minimal
polynomial) which has a modulus ≥ 2, then r ∈ Λ since if there was a relation the other number would ful�ll
it too. The following claim makes the proposition clear.

Claim 4.15. Let S be an open subset of the plane. The set of all numbers with an algebraic conjugate ∈ S
is dense in the plane. [25]

Proof. Pick a point z ∈ C. We want to show that it is possible to �nd an irreducible polynomial with
a root arbitrarily close to z as well as a root s ∈ S. Pick a rational close to z and a rational in S. Let
α = α0 +α1z+ . . .+αnz

n be a rational polynomial with these roots. For every prime p with p 6 | αn, we have
that pα+ 1 is irreducible. Indeed, if it was reducible, then changing the variable to x := 1

z gives the equation

(pα0 + 1)xn + pα1x
n−1 + . . .+ pαn = 0

which is irreducible by Eisenstein's criterion.
Now we see that we can pick p large enough so that, by continuity, the zeroes of pα+ 1 are arbitrarily close
to s and to z, so we can also pick them large enough so that the latter is in S.
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Now simply pick any open subset of the plane which is outside of the circle of radius 2 centered at the origin,
and we are done.

Remark 4.16. The Lyndon-Ullman problem for semigroups is also open, and in this case it turns out that
the ping pong argument works for |r| ≥ 1.

Actually, if we could solve the Lyndon-Ullman problem, we could solve the freeness problem for any two
linear fractional parabolic transformations, that is, Möbius maps with determinant 1 and trace 2. We can
identify these transformations with matrices in SL2(C) with trace 2. This follows from the following lemma.

Lemma 4.17. Denote conjugacy by ∼ . Given A,B,A′, B′ ∈ SL2(C). If A ∼ A′, B ∼ B′ and AB ∼ A′B′,
then all these conjugacies are via the same matrix, i.e. ∃P ∈ SL2(C) with P−1AP = A′, P−1BP = B′.

Proof. First we begin by noticing that we can w.l.o.g. assume that A = A′. This is because of the following:
Assume that QAQ−1 = S. Then we can replace A by S in

A ∼ A′

B ∼ B′

AB ∼ A′B′

by changing the statements to

S ∼ A′

QBQ−1 ∼ B′

SQBQ−1 ∼ A′B′

The last one is true since
Q−1(SQBQ−1)Q = Q−1SQB = AB ∼ A′B′.

So now replace A with A′, since they are conjugate, to get the statement.
It is well known that two matrices in SL2(C) are conjugate i� they have the same trace. We use this in the
following.

� Case 1: A = A′ is diagonalisable.
In this case we can, as outlined above, assume that

A = A′ =

(
u 0
0 u−1

)

Given that B =

(
a b
c d

)
, B′ =

(
a′ b′

c′ d′

)
we get that AB =

(
au bu
cu−1 du−1

)
, so equating traces and

using the third conjugacy gives that

au+ du−1 = a′u+ d′u−1

(a− a′)u = (d′ − d)u−1

Now if u2 6= 1, we have that a = a′ and d = d′. This actually is enough for the conclusion since the
centraliser of A = A′ are other diagonal matrices, which can be tweaked so to conjugate B to B′. If

br = b′, pick P =

(
x 0
0 x−1

)
with x2 = r to get PBP−1 = B′.

If u2 = 1, then A = A′ = ±I and we can pick any matrix we want that conjugates B to B′.

� Case 2: A = A′ =

(
1 1
0 1

)
. Now we can check that

(
1 x
0 1

)
∈ CSL2(C)(A),
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i.e. we can pick any x and the matrix

(
1 x
0 1

)
will conjugate A to A′, or said di�erently, leave A �xed.

In this case the trace of B also has to be 2, or else we can swap their roles and use Case 1. Using the
relation AB ∼ A′B′ gives that (

a+ c b+ d
c d

)
∼

(
a′ + c′ b′ + d′

c′ d′

)
⇔ a+ c+ d = a′ + c′ + d′

⇔ c = c′

It is left to the reader to check that(
1 x
0 1

)(
a b
c 2− a

)(
1 −x
0 1

)
=

(
a′ b′

c 2− a′
)

for x = a′−a
c , so the same matrix will conjugate A to A′ and B to B′ and we are done.

Now how do we use this to get statements about groups generated by two parabolic Möbius maps? Since

tr

(
1 r
0 1

)(
1 0
r 1

)
= 2 + r2,

if we name the invariant τ = trAB − 2 for two parabolic Möbius maps A,B we see:

Corollary 4.18. If two parabolic Möbius maps A,B have invariant τ and r2 = τ, then

〈A,B〉 ∼= 〈
(

1 r
0 1

)
,

(
1 0
r 1

)
〉

Proof. Taking the canonical matrices in SL2(C) corresponding to A and B, using the previous lemma we see

that A ∼
(

1 r
0 1

)
, B ∼

(
1 0
r 1

)
and the condition on τ gives that their products are also conjugate, so in

fact the map φ : A 7→ PAP−1 where P is given by the lemma is an isomorphism, i.e. the groups are even
conjugate.

4.4 Matrix group freeness

What about matrix groups?
Though the Lyndon-Ullman problem shows that little can yet be said for 2x2-matrices, maybe again we have
results for larger ones. But it turns out that here almost nothing is known. We will show now that the
freeness problem for matrix groups is decidable on 2× 2 integer matrices, but the rest are open problems.

Note

If A is a group property, then a group G is virtually A if it has a �nite index subgroup that is A.

Lemma 4.19. SL2(Z) is virtually free.

Proof. We can show that 〈
(

1 2
0 1

)
,

(
1 0
2 1

)
〉 has index 12 in SL2(Z). Sanov showed (exercise) that these

matrices are precisely those of the form

(
2k 4l + 1

4m+ 1 2n

)
. Obviously this has index 2 in the congruence

subgroup Γ(2) which has index 6 in SL2(C), and is free by Theorem 4.13.

Theorem 4.20. The freeness problem is decidable for virtually free groups.

Proof.

Corollary 4.21. The freeness problem is decidable for invertible 2x2 integer matrices.
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We will summarise a few results about what we can say at this stage, but we will mention this problem many
more times later in this report.
An idea would be that we could again �nd an embedding of the direct product of free groups into a matrix
group. This actually works!

Lemma 4.22. There exists an embedding of F2 × F2 into GL4(Z).

Proof. Recall the Lyndon-Ullman problem and that

(
1 2
0 1

)
,

(
1 0
2 0

)
generate a free group. Using this

knowledge we see that

φ : F2 × F2 → GL4(Z)

(a, a) 7→


1 2 0 0
0 1 0 0
0 0 1 2
0 0 0 1

 (b, a) 7→


1 0 0 0
2 1 0 0
0 0 1 2
0 0 0 1



(a, b) 7→


1 2 0 0
0 1 0 0
0 0 1 0
0 0 2 1

 (b, b) 7→


1 0 0 0
2 1 0 0
0 0 1 0
0 0 2 1


is a valid embedding.

So now we have gotten our hopes up - if we can show that the freeness problem is undecidable on F2 × F2,
we are done. But this is not even an open problem, it is simply wrong, so we see that this route will be of
no help.

Theorem 4.23. If the groups G1 and G2 have decidable freeness problem, then G1 ×G2 also does.

Proof. Let K ⊆ G1×G2, and K1 ⊆ G1,K2 ⊆ G2 be the respective projections. It is easy to see that if either
of K1 or K2 are free then K is free. If neither are free, then look at the canonical induced homomorphisms
φ1 : F → K1, φ2 : F → K2 where F is a su�ciently large free group. Then neither φ1 nor φ2 are injective, so
their kernels are nontrivial. But this is enough to imply that their intersection (i.e. the kernel of the induced
mapping of the free group into 〈K〉 ≤ G) is nontrivial since if it wasn't, the kernels would be commuting
normal subgroups, so we could �nd a copy of Z2 in F.

Corollary 4.24. The freeness problem is decidable for F2 × F2.

Note the interesting discrepancy between this case for semigroups and this case for groups.
So this idea cannot work. In fact we would have encountered di�culties even if it did, since in the proof for
semigroups we used that the PCP is undecidable on free semigroups. Here we would need it for groups.

De�nition 4.25 (Post correspondence problem on free groups.). Let Σ and ∆ be two �nite alphabets. A
solution to the PCP on free groups is an algorithm, that given two morphisms h, g : 〈Σ〉 → 〈∆〉 decides
whether or not there exists a nontrivial w ∈ 〈Σ〉 with h(w) = g(w).

Note

The PCP on free groups is an open problem, but the GPCP is known to be undecidable. [26]

Our previous theorems spark an idea though: We proved that if MMPCP on free semigroups was decidable,
then the PCP would be as well. MMPCP was undecidable because (or this was equivalent to saying that)
the freeness problem on W×W was undecidable. So can we use the decidability of the freeness problem on
F2 × F2 to engineer a group version of MMPCP that is decidable, and use this to prove that the PCP is?

De�nition 4.26. We call the MMPCP on free groups the problem of deciding whether or not, given two
morphisms h, g : 〈Σ〉 → 〈∆〉, there exist words w = a1 · · · an, w′ = b1 · · · bm ∈ 〈Σ〉 with the property that
there exist hi, gi, 1 ≤ i ≤ n with not all hi = gi so that

h1(a1) · · ·hn(an) = g1(b1) · · · gm(bm),

and w = w′ 6= 1 in the free group, i.e. they freely reduce to the same word.
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Theorem 4.27. The MMPCP on free groups is decidable.

Proof. Using exactly the same encoding as in Corollary 4.9 gives the result, but this time F2×F2 has decidable
freeness problem.

We cannot just directly transfer the original de�nition since then the decidability of F2 × F2 will not imply
anything about it - we just get that w = w′ in the free group and not that they spell out exactly the same
word.

Open problem. If we de�ne the MMPCP with w = w′ as words, is it still decidable?

Now we can try to use our de�nition of the MMPCP to prove the decidability of the PCP. We have found
no working strategy, and the following details why blindly copying the idea with the Claus instances will not
work.
An important step in Theorem 4.8 was to prove that MMPCP and PCP were equivalent on Claus instances.
It even went so far as to show they would have the same solution! We now provide a counterexample to this
in the free groups case.

Proposition 4.28. There exists a Claus instance (ha, ga) so that the PCP with (h, g) has no solution but
the MMPCP with (ha, ga) does.

Proof. We by no means claim this is a minimal example - it is simply the �rst we found.
De�ne the morphisms as follows:

h, g : 〈a, b, c〉 → 〈a, b, x〉
h(a) = x g(a) = xa

h(b) = ab g(b) = b−1a−1

h(c) = a−1b−1 g(c) = b

Remark that by the encodings we saw before we could take the target alphabet to be binary. Now we can
check that the PCP has no solution here. If there was a solution w, then w−1 would also be a solution, so
we can assume that the �rst letter of the freely reduced w is not an inverse. The letters are picked so that
the x is 'uninvertible', i.e. if w is freely reduced and contains an a(a−1), then the x(x−1) corresponding to
that a in h(w) or g(w) will not be cancelled (check this!).

� Now if a solution w starts with an a, we can easily check it must continue with b.

x| ab
xa|b−1a−1

But this is already a contradiction since we cannot get the bottom row to invert away the false b−1

without using an uninvertible x or breaking the rule that w is freely reduced.

� If a solution starts with b, we immediately get a contradiction since none of these are invertible.

ab|
b−1a−1|

� If a solution starts with c, then the second letter must be b, again leading to a contradiction.

a−1b−1| ab
b|b−1a−1

So the PCP has no solution, but we can check that (if ha, ga are the corresponding Claus instances)

ha(d)ha(b)ga(b−1)ha(e) = ga(d)ha(c−1)ga(c)ga(e)

so our de�nition of the group MMPCP does have a solution.
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This ultimtely means that Claus instances are unsuitable for handling the group case.

Open problem. Does there exist a transformation of group morphisms h, g to say, alternative Claus in-
stances (A.C.I.), so that

� the decidability of the free group PCP on A.C.I. implies the decidability of the PCP in general, and

� the free group MMPCP and free group PCP are equivalent on A.C.I.?

5 The word problem and other general group problems

We have already discussed the word problem for groups and semigroups in general. Obviously an algorithm
can freely reduce, so it is decidable for free (semi)groups. But what happens for matrix groups?

Theorem 5.1. A residually �nite and �nitely presented group G has decidable word problem. [21]

Proof. Take w ∈ G. If it is the identity, we will eventually reach it by trying out all of the consquences of
the relators. In parallel run an algorithm enumerating the homomorphisms of G into �nite groups (i.e. by
looking at subgroups of symmetric groups which ful�ll the relations). If w 6= 1, then one of these must map
w to a non identity element, in which case we also halt.

Theorem 5.2. Finitely presented matrix groups are residually �nite. [28]

So we see that we can indeed solve the word problem in these groups. We now de�ne a type of group which
will come in handy. The following de�nitions and examples are from [5].

De�nition 5.3. We say that a �nitely generated group G = 〈S|R〉, where R is symmetrised, i.e. is closed
under cyclic reduction and inverses, has small cancellation λ ∈ [0, 1], denoted by C ′(λ) if ∀r1, r2 ∈ R with
r1 6= r−1

2 the part of r1 that is absorbed in the product r1r2 is of length < λ ·min (|r1|, |r2|) and vice versa.

De�nition 5.4. Groups which admit a presentation that has cancellation 1
6 are called sixth groups.

Proposition 5.5. Every �nitely presented group has a presentation with C ′( 1
5 ). [29]

Example

(i) Z2 is not a sixth group.

(ii) 〈a, b, c| al, bm, cn〉. has small cancellation λ for any λ > 0.

For example, following is known.

Theorem 5.6. Sixth groups are linear. [2]

So they have solvable word problem. Also clearly the following question would answer the freeness problem
for matrix groups in a negative sense.

Open problem. Does there exist a sixth group with unsolvable freeness problem?

These questions provoke investigating the relationship between the freeness problem and the word problem. Is
one in some sense 'stronger' than the other? First notice that in any torsion-free group with undecidable word
problem (we simply take the existence of these for granted), the freeness problem must be undecidable. This
is because deciding if 〈w〉 is free is the same question as deciding whether or not w = 1. We can answer the
converse fairly well by producing a group that has solvable word problem but undecidable freeness problem.

Lemma 5.7. There exists a computable function f : N→ N with a non-recursive image.

Proof. Encode Turing machines into natural numbers. Now de�ne

φ : N× N→ N

(a, b) 7→

{
a if a halts after b steps

0 else

Now obviously a ∈ Im(φ) i� a halts, so we could solve the halting problem if the image were computable.
Now since we can biject N× N with N, i.e. by f(a, b) = 2a(2b+ 1), we are done.
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Lemma 5.8. Any computable function f : N → N with a non-recursive image can be transformed to one
with the same properties that is injective. [6]

Proof. Let Φ(n) := 2κ(n)3f(n), where κ counts the amount of occurrences of f(n) in f(1), f(2), . . . , f(n). This
is injective and the required properties are preserved.

De�nition 5.9. The �nite order problem for a group G asks for an algorithm which given a word in the
generators determines whether it has �nite order or not.

Obviously the decidability of the freeness problem implies the decidability of the �nite order problem.

Theorem 5.10. Let Φ be the function N → N from the previous lemma that is injective, computable but
has a non-recursive image. Then G := 〈x1, x2, . . . | xn!

Φ(n)〉 has solvable word problem but unsolvable �nite
order problem (hence unsolvable freeness problem)

Proof. Solving the �nite order problem for the generators of G clearly amounts to �nding a decision algorithm
for membership of the image of Φ. That the word problem is solvable is proven by McCool in [20].

De�nition 5.11. The order problem for a group G asks for an algorithm which given a word in the generators
determines whether it has �nite order or not, and if so, what this order is.

We will think a bit about the interplay of the order, �nite order and word problem. We have seen that the
word problem does not imply the �nite order problem. How about the other way around? As said above, a
torsion-free group with undecidable word problem shows that the converse also does not hold. The following
is clear:

Claim 5.12. A group with solvable �nite order and word problem also has solvable order problem.

Proof. If the �nite order problem outputs NO, we are done. If it is YES, apply the algorithm for the word
problem on successive powers until we get YES.

Claim 5.13. The order problem implies both the word and the �nite order problem.

The word problem implies neither of the others, and the �nite order problem doesn't imply the order problem
since it would then imply the word problem. We have not been able to �nd anything regarding the following.

Open problem. Does there exist a group with solvable �nite order problem but unsolvable word problem?

As a last remark note that the �nite order problem is solvable for rational matrix groups, and hence by Claim
5.13 also the order problem. [18]

6 Further matrix group problems

We will now turn our focus to further problems regarding matrix groups. We will make extensive use of the
embedding in Lemma 4.22.

De�nition 6.1. The generalised word problem or themembership problem for a group G asks for an algorithm
which given a �nite set of words {g1, . . . , gk} in the generators and another word w determines whether
w ∈ 〈g1, . . . , gk〉 or not.

The name should be clear - we get the word problem by setting k = 1, g1 = 1.

De�nition 6.2. The conjugacy problem for a group G asks for an algorithm which given two words in the
generators determines whether they are conjugate within G or not.

We will prove now that both are undecidable for F2 × F2 and hence get the result for invertible 4x4 integer
matrices.

Note

Obviously the conjugacy problem is decidable for the entire general linear group over a �eld � two
matrices are similar if and only if they share Jordan normal forms (up to permutation). But we ask if
this can be done for any subgroup, where we only allow conjugation by elements within that subgroup.

We can get both problems using the so-called Mihailova construction. [23] [22].
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De�nition 6.3. The Mihailova subgroup M(G) of Fn × Fn based on a given group G is the subgroup
{(x, y) ∈ Fn × Fn| x = y in G}.

What n is will become clear in the next claim, but by our known encoding in Lemma 4.22 we can assume
this number is 2. We can check that this is a subgroup. In particular we have

Claim 6.4. If G is given by 〈x1, . . . , xn| r1, . . . , rm〉 then M(G) is generated by

{(x1, x1), . . . , (xn, xn), (1, r1), . . . , (1, rm)}.

This is because we can build any word on the left using the �rst n generators, and then add any relations in
any way we would like to create any equivalent word on the right side. Check [23] for a formal proof. But
now the following theorem is immediate.

Theorem 6.5. The generalised word problem is undecidable for GL4(Z).

Proof. Pick a group G with undecidable word problem. Then M(G) is generated as above, and deciding
whether w1 = 1 in G is equivalent to deciding whether or not (w1, 1) ∈M(G). Now embed M(G) in GL4(Z)
via Lemma 4.22.

Remark 6.6. Borisov gives an example of a group with 5 generators and 12 relations in [4] that has
undecidable word problem. This means that the generalised word problem remains undecidable for 17-
generated matrix groups.

We have not been able to �nd a group with undecidable word problem in the literature with a smaller sum
of generators and relators. Solving the following problem seems absolutely hopeless.

Open problem. What is the smallest possible sum of the amount of generators and relators in a group with
unsolvable word problem?

The Mihailova construction also gives the same result for the conjugacy problem thanks to the following
lemma.

Lemma 6.7. Let w ∈ Fn+1. Rewrite G as 〈x1, . . . , xn, xn+1| r1, . . . , rm〉. Then w = 1 in G if and only if
(xn+1, xn+1) is conjugate to (xn+1, w

−1xn+1w).

Proof. The only reason for rewriting the presentation of G is that we would like xn+1 to be the identity in
G but not in the free group. Now obviously the one direction of the implication is clear since if w = 1, then
(1, w) ∈M(G) and we can conjugate (xn+1, xn+1) to get (xn+1, w

−1xn+1w).
Now assume

(X,Y )−1(xn+1, xn+1)(X,Y ) = (xn+1, w
−1xn+1w)

⇒ X−1xn+1X = xn+1 ∧ (wY )−1xn+1wY = xn+1

Claim. If two elements a, b ∈ Fn commute, they must be powers of a common word s ∈ Fn.

Proof. In this case 〈a, b〉 ≤ Fn is abelian, but by Nielsen-Schreier is also free. So 〈a, b〉 ∼= Z⇒ 〈a, b〉 = 〈s〉.

Using the claim we see that X = xkn+1, wY = xln+1. But then X = wY = 1 in G. Notice that since
(X,Y ) ∈M(G) we have X = Y in G, so w = 1 as expected.

Corollary 6.8. The conjugacy problem is undecidable for 17-generated subgroups of GL4(Z).

So we have used the Mihailova construction to fairly easily get these two important results. We will also
present the Rips construction, an idea functioning similarly and also giving the undecidability of the mem-
bership problem for matrices via small cancellation groups. The classical reference for this is [31].

Theorem 6.9 (Rips construction). Let G be a �nitely presented group and λ ∈ [0, 1]. Then there exists a
short exact sequence

1 −→ K −→ H
ψ−→ G −→ 1

with H having small cancellation λ and K being �nitely generated.
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Proof. See [31].

The proof in the cited paper is short and simple enough that we feel we have little to add. Now since ψ is
surjective we see how to prove Theorem 6.5 in albeit a somewhat weaker form � picking a G with unsolvable
word problem gives that H has unsolvable generalised word problem since w = 1 in G is equivalent to
ψ−1(w) ∈ kerψ in H. Now Theorem 5.6 gives that we can embed H in an (integer) matrix group.

De�nition 6.10. The orbit problem for a linear group G of dimension n asks for an algorithm which given a
�nite set of invertible matrices {G1, . . . , Gk} ⊆ G and two vectors ~u,~v determines whether ∃M ∈ 〈g1, . . . , gk〉
with M~u = ~v or not. [10]

Theorem 6.11. The orbit problem is undecidable for GL16(Z).

Proof. We reduce the conjugacy problem on GLn(Z) to the orbit problem on GLn2(Z). We can identify
elements of GLn(Z) with vectors in Zn2

. Conjugation with an n×n matrix is then a linear map on the space
of these vectors and can thus be identi�ed with a n2 × n2-matrix. So solving the conjugacy problem on n
dimensions is actually a subproblem of the orbit problem on n2.

De�nition 6.12. The identity problem for a linear group G asks for an algorithm which given a �nite set of
matrices {G1, . . . , Gk} ⊆ G determines whether I ∈ {G1, . . . , Gk}+.

We can solve this problem interestingly using a variation of the PCP, called the ICP.

De�nition 6.13. The Identity Correspondence Problem (ICP) over a free semigroup asks, given two mor-
phisms h, g : Σ+ → 〈∆〉, if there exists a word w ∈ Σ+ so that h(w) = g(w) = 1.

Notice that we map to a group alphabet (which we can again assume to be binary).

Theorem 6.14. The ICP is undecidable on 36 letters. [1]

The proof is very complicated and shows that if we can solve ICP on 8(n− 1) letters, we can solve PCP on
n letters. Now we can use this to easily show the following.

Theorem 6.15. The identity problem is undecidable for GL4(Z).

Proof. Given an instance (h, g), Take the mapping in Lemma 4.22 again and regard the semigroup generated
by the images of (h(a), g(a))∀a ∈ Σ, then it will contain the identity if and only if there is a solution the
ICP.

We are also somewhat interested, following the main aim of this report, to think about the ICP on a free
group instead of a semigroup.

De�nition 6.16. The Identity Correspondence Problem (ICP) over a free group asks, given two morphisms
h, g : 〈Σ〉 → 〈∆〉, if there exists a nontrivial word w ∈ 〈Σ〉 so that h(w) = g(w) = 1.

We have actually noticed that this is decidable, in contrast to the semigroup ICP.

Theorem 6.17. ICP over a free group is decidable.

Proof. This is the same as asking if {(h(a), g(a)), a ∈ Σ} ⊆ F2 × F2} has a nontrivial relation � but this is
exactly the freeness problem on F2 × F2 which we know to be decidable by Corollary 4.24.

This provokes the following, which we have been unable to solve.

Open problem. Does there exist an analogue of Theorem 6.14 for groups, i.e. using the decidability of ICP
to show the decidability of the PCP?
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7 Limitations of our methods

So far we have used the mappings in the beginning of Chapter 4.2 and the one in Lemma 4.22 many times.
This gave us results about 3× 3 and 4× 4 matrices respectively. How do we know we can't do better? The
�rst result we found of this form is in the paper also introducing the MMPCP for the �rst time.

Theorem 7.1. There is no injective semigroup morphism φ : Σ+ × Σ+ → C2×2. [7]

Proof. Write Σ = {a, b}, w.l.o.g. assumed to be binary as always. If φ is a morphism, then conjugating it
will preserve this property. So we can assume that the image of (a, 1) is in Jordan form. (a, 1) commutes
with (1, a) and (1, b).

� Case 1: If its image is diagonal with two di�erent eigenvalues, then the images of these two other
elements must then also be diagonal in order to commute with φ(a, 1), but then they commute with
each other, a contradiction.

� Case 2: φ(a, 1) cannot be a multiple of the identity since then it would commute with everything, so
also with the image of φ(b, 1).

� Case 3: φ(a, 1) =

(
λ 1
0 λ

)
. But here again the matrices commuting with it have the form

(
x y
0 x

)
,

which commute together, which is a contradiction as in Case 1.

The interpretation for this is that if we want to prove similar results for 2 × 2-matrices, we will have to
develop new strategies as our ideas so far cannot work here.
Inspired by this theorem we wondered if it is possible to �nd a similar result for the group case, i.e. the
embedding in Lemma 4.22, and we were successful. Many thanks to Emmanuel Breuillard whose valuable
comments made the completion of the following theorem (7.8) possible.
Before this we prove a few important lemmas, which are also very interesting statements in their own right.
A standard reference for solvable groups is [13].

De�nition 7.2. A group G is called solvable if its derived series, i.e. repeated taking of commutator
subgroups terminates in the trivial group in �nitely many steps.

Lemma 7.3. Every subgroup of a solvable group is solvable.

Proof. Clear.

Lemma 7.4. If G has a normal subgroup K so that K is solvable and G
K is solvable, then G is solvable.

Proof. Check Corollary 9.2.1 of [13].

Lemma 7.5. The group of upper triangular matrices U is solvable.

Proof. This is fairly easy to see. First we show that the subgroup of upper triangular matrices with only
ones on the diagonal is solvable � this can easily be computationally checked. Then we notice that this is a
normal subgroup of U, and the quotient is the group of diagonal matrices, which is abelian and thus solvable
� so we are done by Lemma 7.4.

Lemma 7.6. Every nontrivial �nitely generated normal subgroup of the free group F2 has �nite index.

Proof. A non-topological, combinatorial argument can be found in [17].

Note

An intuitive argument for the above is the following: Given a subgroup of F2, we can construct the
corresponding covering graph. If the subgroup is normal then the graph is regular, and if it is �nitely
generated it has �nitely many loops deviating it from a tree � but then it has to be �nite since in an
in�nite regular graph we could map one of the �nitely many loops to a vertex so far away that there
aren't any loops there.
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Lemma 7.7. The free group F2 does not contain a nontrivial abelian normal subgroup.

Proof. The Nielsen-Schreier theorem gives that any abelian subgroup is cyclic and so �nitely generated. If
we can show that no cyclic subgroup has �nite index, then we are done by the previous lemma. Proceed by
contradiction. Assume that 〈a〉 ≤ F2 has �nite index, i.e. there exists a �nite set S so that every element
in F2 can be written as sak with s ∈ S. If m is the length of the longest element in S, Pick K ∈ N so that
|aK | > m. If a is freely reduced, then |an| is increasing and has a constant last letter. Picking a word w with
length longer than |s|+ k · |a| and ending with a di�erent letter than a, we see that w cannot be written in
the form sak, a contradiction.

Theorem 7.8. There exists no embedding of F2 × F2 into GL3(C).

Proof. Write F2×F2
∼= 〈a, b〉× 〈c, d〉. Let φ : F2×F2 → GL3(C) be an injective homomorphism and proceed

by contradiction. Note that the elements in the second free group commute with the ones in the �rst.
If φ exists, we can conjugate it by a matrix in GL3(C) to be able to w.l.o.g. assume that A := φ(a) is in
Jordan normal form.

� Case 1: A diagonal, but does not have exactly two eigenvalue that are the same. If the three eigenvalues
are the same, then A is a multiple of the identity, i.e. in the center of GL3(C), and thus commutes with
B := φ(b), a contradiction. If they are all distinct, then C := φ(c) and D = φ(d) must be diagonal
since they commute with A, but then C and D commute with each other, a contradiction.

� Case 2:

A =

λ 1 0
0 λ 1
0 0 λ


We calculate the centraliser of A.λ 1 0

0 λ 1
0 0 λ

a b c
d e f
g h i

 =

a b c
d e f
g h i

λ 1 0
0 λ 1
0 0 λ


⇔

d+ λa e+ λb f + λc
g + λd h+ λe i+ λf
λg λh λi

 =

λa a+ λb b+ λc
λd d+ λe e+ λf
λg g + λh h+ λi


Which is equivalent to saying a = e = i, d = h = g = 0, b = f or

CGL3(C)(A) = {

µ x y
0 µ x
0 0 µ

 | µ, x, y ∈ C}.

This is impossible though since F2 = 〈C,D〉 ≤ CGL3(C)(A), and the latter as a subgroup of upper-
triangular matrices is solvable, hence cannot contain a free group as it is not solvable.

� Case 3:

A =

λ 1 0
0 λ 0
0 0 µ


We proceed as in Case 2, but we will see that we will have to di�erentiate between two further cases.λ 1 0

0 λ 0
0 0 µ

a b c
d e f
g h i

 =

a b c
d e f
g h i

λ 1 0
0 λ 0
0 0 µ


⇔

λa a+ λb µc
λd d+ λe µf
λg g + λh µi

 =

d+ λa e+ λb f + λc
λd λe λf
µg µh µi
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� Case 3a: λ 6= µ :
This gives c = d = f = g = h = 0, a = e, or written more succintly

CGL3(C)(A) = {

α x 0
0 α 0
0 0 β

 | µ, x, y, z ∈ C}.

Now a contradiction can either be reached as in Case 2 by invoking solvability of upper triangular
subgroups, or simply by checking that the given subgroup is even abelian.

� Case 3b: λ = µ (or A diagonal with an eigenvalue of multiplicity 2)
We also take care of the remaining possibility in Case 1 here: All these cases have as a common
point that A has an eigenspace that is a plane. In fact, we may assume that A,B,C,D all have a
planar eigenspace since else we can interchange the roles of the matrices and use one of the other
cases to lead to a contradiction.

Claim. A and B have the same planar eigenspace.

Proof. Since C and D commute with A and B, they must preserve their eigenspaces. So if the
eigenspaces are distinct, the entirety of F2

∼= 〈C,D〉 preserves two di�erent planes, i.e. their
intersection, i.e. a plane and a line it contains, so under a suitable basis change the group would
only consist of upper triangular matrices, a contradiction as above.

Now change basis so that A is in Jordan normal form. This forces

A =

λ 1 0
0 λ 0
0 0 λ

 B =

a 0 c
0 a f
0 0 i

 ,

or

A =

λ 0 0
0 λ 0
0 0 µ


with µ 6= λ. In particular we can now calculate the centralisers of the two possibilites for A. In the
same fashion as above we get that

CGL3(C)(A) ⊆ {

α w x
0 β y
0 z γ

 | α, β, γ, x, y, z ∈ C}.

In particular notice that now F2 × F2 ⊆ CGL3(C)(A). Consider the mapping

ψ : F2 × F2
∼= 〈A,B〉 × 〈C,D〉 → GL2(C)α w x

0 β y
0 z γ

 7→ (
β y
z γ

)
By Theorem 7.1 we must have that ψ is not injective, i.e. the kernel is nonempty. But

kerψ =

α x y
0 1 0
0 0 1


is abelian and normal, and a subgroup of F2 × F2. There must exist an element with a nontrivial
element on either the left or the right, and the canonical mapping to this F2 gives a nontrivial
abelian normal subgroup of it, a contradiction to the lemma.

So also in the group case of the conjugacy and generalised membership problem � if we want analogous results
for say, 3× 3 - matrices, we will need a new approach.
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8 The hyperplane problem

Firstly we are interested in the mortality problem for semigroups of matrices � the main reference for this is
[12].

De�nition 8.1. The mortality problem for a linear group G asks for an algorithm which given a �nite set
of matrices {G1, . . . , Gk} ⊆ G determines whether 0 ∈ {G1, . . . , Gk}+.

De�nition 8.2. The upper-left-corner problem for a linear group G asks for an algorithm which given a
�nite set of matrices {G1, . . . , Gk} ⊆ G determines whether ∃M ∈ {G1, . . . , Gk}+ with M11 = 0.

Lemma 8.3. The solvability of the mortality problem for GL3(Z) implies the solvability of the upper left
corner problem for GL3(Z).

Proof. Consider the matrix B =

1 0 0
0 0 0
0 0 0

 . Note that B2 = B. Given a set of matrices S we want to

decide the upper left corner problem on, we can apply the mortality algorithm on the same set with B added.
Now if there is a matrix M ∈ S+ with M11 = 0, then BMB = 0 and the mortality algorithm will output
YES. If there is none, then the mortality algorithm will output NO since if it outputs YES, there must be
Mi ∈ S+ with

BM1BM2 · · ·BMnB = 0

(BM1B)(BM2B) · · · (BMnB) = 0

M111M211 · · ·Mn11 = 0,

which is a contradiction.

Theorem 8.4. The upper-left-corner problem is undecidable for sets of 5 3× 3 - matrices.

Proof. See Theorem 3 in [12], where they prove this for 7, since this was the amount of letters PCP was
known to be undecidable on at that time.

Corollary 8.5. The mortality problem is undecidable for sets of 6 3× 3 - matrices.

Similarly as before we want to think about generalising this to groups instead of semigroups. Obviously the
mortality problem makes no sense for groups since we cannot get the zero matrix from invertible matrices
with nonzero determinant. But the upper-left-corner problem is a new question that we can ask for groups.
We attempted to reduce this problem to both the orbit problem as well as to the membership problem. We
will �rst sketch a failed attempt for the former, and then a successful proof resulting from the latter. We
also will switch to Q since this makes everything easier.
The core idea for reducing the upper-left-corner problem to the orbit problem for GLn(Q) is noticing that
the former is equivalent to asking the hyperplane problem:

De�nition 8.6. The hyperplane problem asks to �nd an algorithm deciding for a �nitely generated subgroup
〈S〉 ⊆ GLn(Q), a hyperplane H ⊆ Qn and a vector ~u, if ∃M ∈ 〈S〉 with M~u ∈ H.

The upper-left-corner problem is equivalent (after basis changes) to asking, given a hyperplane H through
the origin, a vector ~u and a �nite set of invertible matrices S, if there exists a matrix M generated by those
in S so that M~v ∈ H. (We have called this the hyperplane problem.) We show that if we can decide this
problem in a slight variation in d dimensions, we can decide the orbit problem in d dimensions.
Consider the following variation (we call it V) of the problem: Pick an algebraic number α of degree d − 1.
Given a vector ~u ∈ Zd, an d− 1 dimensional subspace, i.e. hyperplane through the origin we call H ⊆ Q[α]d

and a �nite subset S ⊆ GLd(Z), we pose the same hyperplane problem. We claim that variation V is
undecidable, because we can use it to solve the orbit problem as follows.

Lemma 8.7. We can �nd an appropriate 17-generated subgroup 〈S〉 ⊆ GL16(Q) as above so that if there
exists an M ∈ 〈S〉 with M~u = ~v, then for no M ′ ∈ 〈S〉 do we have M ′~u = n~v or M ′~u = 1

n~v for any
n ∈ Z\{0, 1}.
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Proof. The original undecidable problem we get the orbit problem from is the conjugacy problem (on 4x4
matrices). We claim that the given embedding already has this property.
Given M and M ′ violating the claim in the lemma, this is equivalent to �nding 4x4 matrices M,M ′, P,Q in
the embedding of F2 × F2 so that M−1PM = Q and M ′−1PM ′ = nQ. But then

M−1PM = Q =
1

n
M ′−1PM ′ ⇔ (MM ′−1)−1PMM ′−1 =

1

n
P,

and since P is invertible taking determinants on both sides implies n = 1.

Theorem 8.8. Variation V is undecidable.

Proof. Let S have the properties of Lemma 8.7. Now we are given vectors ~u,~v.

Claim. There exists an enumeration of hyperplanes in Q[α]d that intersect the integer lattice in ~v.

Proof. Let zi ∈ Q[α], and {xi} be the canonical basis of Zd. Each hyperplane in Q[α]d through the origin is
of the form x1 + z2x2 + . . . + zdxd = 0. Since we can enumerate the elements of Q[α] (there are countably
many), we can enumerate d−tuples of them. We can then check if ~v lies on the hyperplane and add the
hyperplane to our target enumeration if it does.

An extension of this idea involves the dual space of Q[α]d. By duality we can regard the hyperplanes containing
~v as forming a hyperplane themselves in the dual space, which we call Hv. This hyperspace has a basis of
integer vectors. (This is a well known fact which can be looked up in i.e. paragraph 108 of [38].)

Claim. There exists a hyperplane in Q[α]d that only intersects the integer lattice in ~v and its integer
multiples, and integer vectors of which it is a multiple.

Clearly this is the best we can do, any hyperplane containing ~v will necessarily contain these points as well.

Proof. Can obviously assume that ~v is primitive. If a hyperplane contains ~v and another primitive vector
~w, then the vector corresponding to this hyperplane in the dual is in both Hv and Hw, i.e. in a proper
subspace of Hv. Conversely, if the vector corresponding to this hyperplane is in no proper subspace, then the
hyperplane only intersects the integer lattice in ~v and its multiples, as required. So the problem reduces to
this:
Given the vector space Q[α]d−1, show that it contains a vector that cannot be written as a linear combination
over Q[α] of less than d − 1 integer vectors. We claim that this vector is ~x = ~e1 + α~e2 + . . . + αd−2 ~ed−1,
where the ~e1 are the standard basis vectors. To see this, assume we can write it as ~x = z1 ~v1 + . . . + zn ~vn,
~vi ∈ Zd−1, where n < d− 1. But this is equivalent to

~x =


1
α
...

αd−2

 =
(
~v1 ~v2 · · · ~vn

)
~z =

(
~v1 ~v2 · · · ~vn

)
Z


1
α
...

αd−2

 ,

where Z is the matrix with Zij being the coe�cient of αi−1 in zj and ~z contains the zi.
Now since α is of degree d−1, the only way this can hold is if the matrix multiplying the vector on the right is
the identity, since no other linear relations hold between the d− 1 entries. But the matrix

(
~v1 ~v2 · · · ~vn

)
has more rows than columns since n < d− 1 and hence has no right inverse.

Call this enumeration Hi.
Assume there exists an algorithm solving variation V. Now let xi be an enumeration of the countable set
(Z\{0}) ∪ { 1

n | n ∈ Z\{0}}. The following algorithm solves the orbit problem for S, ~u,~v :
Run the two following procedures in parallel, while keeping in mind Lemma 8.7:

� Check if any one letter words in S map u to x1~v. Then check if any two letter words in S map u to x1~v.
Then check if any one letter words in S map ~u to x2~v. Then check if any three letter words in S map ~u
to x1~v. Then check if any two letter words in S map ~u to x2~v. Then check if any one letter words in S
map ~u to x3~v. Proceeding in this triangular fashion, this procedure will halt if there exists a M ∈ 〈S〉
so that M~u = n~v or 1

n~v. Not only this, but we will know the value of n. By Lemma 8.7, in this case we
can give a correct answer.
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� Take the enumeration Hi and run the algorithm solving variation V on each one in order. Halt if the
algorithm gives the answer NO for any hyperplane. This procedure halts if if there does not exist a
M ∈ 〈S〉 so that M~u = n~v or 1

n~v, which is exactly the complementary case of the �rst procedure. But
in this case the correct answer is NO, since n = 1 is also impossible.

So this completes the proof that variation V is undecidable.

We hoped that we could reduce the hyperplane problem in higher dimensions to variation V, for example by
mappings such as

φ : Q[α]d → Qd
2−d ψ : GLd(Q)→ GLd2−d(Q)

~a0 + α · ~a1 + . . .+ αd−2 · ~ad−2 7→


~a0

~a1

...
~ad−2

 A 7→


A

A
. . .

A


It is true that

ψ(A)φ(~u) = φ(~v)⇔ A~u = ~v,

but ψ(H) is no longer a hyperplane in the vector space of dimension d2 − d.

Open problem. Can we reduce the hyperplane problem to Variation V of the hyperplane problem?

But it turns out that we can still prove the undecidability of the hyperplane problem, even in 6×6 - matrices.
The following argument is due to Emmanuel Breuillard.

Lemma 8.9. There exists a free subgroup F2 of SL2(Z) on two generators, that does not contain any
nontrivial unipotent elements.

Proof.

Lemma 8.10. There exists a free subgroup F of SL3(Z) on two generators, a rational linear form f : Q3 → Q
and a vector ~u with the property that ∀g ∈ F :

� f(g~u) ≥ 0

� f(g~u) = 0⇒ g = 1

Proof. Consider the double cone in three dimensions given by x2 + yz = 0. We �rstly want a free subgroup
on two generators of matrices in SL3(Z) so that it preserves each of the two cones seperately � this can be

constructed by interpreting a vector on the cone as a matrix in

(
x y
z −x

)
∈ SL2(Z) with zero determinant

and zero trace. Then the conjugation action of SL2(R) preserves these two properties, so keeps the vector on
the double cone.

Claim. This action even keeps a vector on the same cone.

Proof. The de�ning feature of one cone is y > 0, z < 0 and the other has y < 0, z > 0. Now we have(
a b
c d

)(
x y
z −x

)(
d −b
−c a

)
=

(
x′ y′

z′ −x′
)

(
a b
c d

)(
dx− cy ay − bx
dz + cx −bz − ax

)
=

(
x′ y′

z′ −x′
)

Now if y > 0, z < 0 and x2 = −yz, we have that

y′ = a2y − abx− b2z − abx = a2y − 2abx+ b2 · x
2

y
=

1

y
(ay − bx)2 > 0

z′ = cdx− c2y + d2z + cdx = −(c2y − 2cdx+ d2x
2

y
) = −1

y
(cy − dx)2 < 0

And the other cone works analogously.
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Similarly as in Theorem 6.11 we can identify this conjugation action (now with one more constraint, since
they are in SL2(Z)) with matrix multiplication in GL3(Z). In particular this correspondence can be checked
to preserve unipotence, i.e. that all eigenvalues are 1. Now pick any integer vector on the cone, say

~u =

0
1
0

 .

We have Q(~u) = 0 for the de�ning quadratic form of the cone, that is, Q(~x) = −(x2 + yz). The associated
symmetric bilinear form B is B(~x, ~y) = 1

2 (Q(~x) +Q(~y)−Q(~x− ~y)).

Note

In �elds of characteristic 6= 2, so also Q, there is a one-one correspondence of quadratic and symmetric
bilinear forms. This is via Q(~x) = B(~x, ~x) and

B(~u,~v) = B(~u, ~u) +B(~u,~v − ~u) = Q(~u) +B(~v − ~u, ~u)

= Q(~u) +B(~v − ~u, ~u− ~v) +B(~v − ~u,~v) =

= Q(~u)−Q(~v − ~u) +B(~v,~v)−B(~u,~v)

⇒ B(~u,~v) =
1

2
(Q(~u) +Q(~v)−Q(~v − ~u))

We now claim that the linear form given by f(~x) = B(~u, ~x) and the hyperplane H = {~x| B(~u, ~x) = 0} are
the ones with the required properties. The hyperplane is simply given by

B(~u, ~x) = 0

1

2
(Q(~u) +Q(~x)−Q(~x− ~u)) = 0

Q(~x) = Q(~x− ~u))

x2 + yz = x2 + (y − 1)z

z = 0

This is precisely the hyperplane tangent to the double cone that contains ~u. Let F in the statement of this
lemma be the free subgroup of GL3(Q) that is associated with the conjugation by the subgroup given by
Lemma 8.9. Now we want to check the condition of the lemma. Pick a g ∈ F. Now f(g~u) ≥ 0, by the previous
calculation, holds i�

B(~u, g~u) ≥ 0

⇔ (g~u)z ≥ 0,

which simply means that it is on the same side of the hyperplane as the cone that ~u is in � but by our above
claim we have that always happens for any g, so the �rst condition is shown.
Now we want to show that if this equals zero, we must have had g = 1. If this is zero it means that g~u is in
the hyperplane and on the cone, so it must be a rational multiple of ~u. Since the correspondence between g as
a 3× 3 - matrix and g as a conjugation via SL2(Z) preserves eigenvalues, we are looking for an M ∈ SL2(Z)
with a rational eigenvalue. But then the other eigenvalue has to be rational as well, and their product is 1,
so we can write them as p

q and q
p with coprime p, q ∈ Z. Now their trace is an integer, so

pq|p2 + q2 ⇒ p|q2, q|p2 ⇒ p = q = ±1.

They cannot di�er in sign since then the determinant would not be 1. Also they cannot both be −1 since
then ~u would be mapped to −~u which is on the other cone. So we see that g has to be unipotent to map ~u
to a rational multiple to itself, but Lemma 8.9 then implies that g is the identity.

Theorem 8.11. The hyperplane problem for groups is undecidable on GL6(Q).

Proof. We reduce it to the membership problem for F2 × F2. We are given g ∈ F2 × F2 and 〈g1, . . . , gm〉 ≤
F2 × F2. Pick two copies of everything in the previous lemma, say F1, F2, ~u1, ~u2 and f1, f2. Write

~u =

(
~u1

~u2

)
.
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Let H be the hyperplane de�ned by the kernel of the linear form f1( ~u1) + f2( ~u2). Now obviously we can
embed F2 × F2 in GL6(Q) via a direct sum of the matrices in F1, F2 we had from the previous lemma.
Now we apply the hypothetical algorithm for the hyperplane problem by asking if 〈g1, . . . , gm〉 maps g~u to
H. By the properties of f, this happens if and only if g~u can be mapped to ~u, or equivalently if

g−1 ∈ 〈g1, . . . , gm〉 ⇔ g ∈ 〈g1, . . . , gm〉.

Remark 8.12. In the same way as before the hyperplane (upper-left-corner) problem remains undecidable
for 17-generated groups of matrices in GL6(Q).

Remark 8.13. By conjugation via permutation matrices we see that the upper-left-corner problem is equiv-
alent to the (i, i) = 0 problem, i.e. where we ask if any element on the diagonal vanishes. [19] shows the
undecidability of the upper-right-corner problem for matrix semigroups, which we can change by conjugation
to any entry of the matrix save the ones of the diagonal.

So this completes the hyperplane problem.

Remark 8.14. Note that our proof above of the undecidability of the hyperplane problem is easily extendable
to subspaces of dimension lower than 5, since we just need to make H smaller while still containing ~u,, which
preserves all of the properties we need.

De�nition 8.15. The subspace problem asks to �nd an algorithm deciding for a �nitely generated subgroup
〈S〉 ⊆ GLn(Q), a subspace H ⊆ Qn and a vector ~u, if ∃M ∈ 〈S〉 with M~u ∈ H.

This is obviously more di�cult than the hyperplane problem, i.e. the latter is a subproblem of it.

Corollary 8.16. The subspace problem is undecidable for 17-generated subgroups of GL6(Q).

The orbit problem was originally presented in [10] for groups of matrices. We can ask the same problem for
semigroups - since every group is a semigroup, this is a harder problem which is then also undecidable. We
restate this for convenience.

De�nition 8.17. The semigroup orbit problem for a linear semigroup S of dimension n asks for an al-
gorithm which given a �nite set of matrices {S1, . . . , Sk} ⊆ S and two vectors ~u,~v determines whether
∃M ∈ {S1, . . . , Sk}+ with M~u = ~v or not.

We have discovered a peculiar relationship between the semigroup orbit problem and the subspace problem.

De�nition 8.18. We say that a problem A has higher Turing complexity than a problem B if a hypothetical
algorithm for A can be used to decide B. Conversely, we say that B has lower Turing complexity or that B
can be Turing reduced to A.

Note

We do not require A to be decidable! This de�nition just makes precise the intuition for an undecidable
problem to be harder than another undecidable problem.

Theorem 8.19. The semigroup orbit problem for a recursive (thus potentially in�nite) set S on GLn(Q)
has higher Turing complexity than the subspace problem for groups on GLn(Q).

Proof. We are given an instance of the subspace problem, i.e. a vector ~u, a subspace X and a �nite set
S ⊆ GLn(Q).
Now let K be the recursive semigroup of matrices which projects everything that is not in X to X, and acts
as GLdimX(X) on X (we just need that its action on X is transitive). Pick a nontrivial vector ~x ∈ X. If none
exists, we are done.
Now apply the hypothetical semigroup orbit algorithm on S′ = S ∪ S−1 ∪K,~x and ~u, i.e. we will �nd out if
there exists a matrix in S′+ that maps ~x to ~u.
If this algorithm says NO, then the answer to the subspace problem must also be NO since otherwise we can
map ~u to some ~x′ ∈ X, and then via K to ~x.
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If this algorithm says YES, then there exists a matrix of the form S1K1 · · ·SnKn mapping ~x to ~u. But for
~x ∈ X any vector of the form SiKi(~x) is equal to Kj(~x) for some Kj ∈ K since K acts transitively on X. So
we can write SmKm(~x) = ~u, but since Km �xes X we see that S−1

m will map ~u into X, so the answer to the
subspace problem is YES.

Open problem. Can we somehow tweak the proof in the previous theorem so we only require the semigroup
orbit problem for a �nite set S?

9 Free subgroups of SO3

We were motivated to study this because of the proof of the Banach-Tarski paradox. This result shows that
it is possible to use the axiom of choice to partition the unit sphere into 5 parts so that we can rotate these
parts to get two unit spheres. The classic reference for this is [39]. A key step in the proof is �nding a
subgroup of SO3, the group of rotations of the sphere, that is free.

r±αx =

1 0 0
0 cosα ∓ sinα
0 ± sinα cosα

 r±αz =

 cosα ∓ sinα 0
± sinα cosα 0

0 0 1


are the rotations by an angle α around the x and z axis respectively. We ask for what α we have that 〈rαx , rαz 〉
is a free group of rank 2.
For the proof of Banach-Tarski we just require the fact that any such value of α exists. [39] proves in Theorem
2.1. that if cosα = 1

3 , we do get a free group. We are able to extend the idea of their proof, showing a
stronger result.

Theorem 9.1. If cosα = 2q
q2+1 for q ∈ Q, q 6= 0, 1 then 〈rαx , rαz 〉 is a free group of rank 2.

Proof. Let x, y, z be coprime integers with x2 + y2 = z2.. We claim that if cosα = x
z , we get a free group.

Then we have

rαx =

1 0 0
0 x

z −yz
0 y

z
x
z

 rαz =

x
z −yz 0
y
z

x
z 0

0 0 1

 .

Now we want to prove that the vector ~v =

0
1
0

 cannot be mapped to itself by a nontrivial word in rαx , r
α
z ,

so we cannot get the identity, i.e. there is no relation.

Claim. ~v is only mapped to vectors of the form 1
zk

ab
c

 , where b 6≡ 0 (mod z).

This can be shown by induction, where it turns out that k is the length of the word. If we always pull out a
factor of 1

z with every additional letter, we can check that we have the mappings

rαx : a 7→ a′ = za r−αx : a 7→ a′ = za

b 7→ b′ = bx− cy b 7→ b′ = bx+ cy

c 7→ c′ = by + cx c 7→ c′ = cx− by
rαz : a 7→ a′ = ax− by r−αz : a 7→ a′ = ax+ by

b 7→ b′ = ay + bx b 7→ b′ = bx− ay
c 7→ c′ = zc c 7→ c′ = zc

First we can calculate by hand that this is true for words of length 2 or less. The only possibilities we get for
b′′ are x2 or x2− y2. We know that the former is not divisible by z by assumption. For the latter we see that

(x2 − y2, z) ≤ (x2 − y2, z2) = (x2 − y2, x2 + y2) = (x2 + y2, 2x2) = (x2 + y2, x2) = (x2, y2) = 1
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where we have used that z is odd (this is because the only quadratic residues mod 4 are 0,1, and if z2 ≡ 0(4),
we could not add to it using two odd squares).

Now we will use induction, �xing a vector 1
zk

ab
c

 with b 6≡ 0 (mod z) and its successor with b′ 6≡ 0 (mod z)

to show that the vector after this has b′′ 6≡ 0 (mod z). This is why we needed to check the two length words
and not just the one length ones.
Now assume w is a word with length larger than 2. We know that z|c′.

� Case 1: w = r±αx ◦ r±αz ◦ v

b′′ = b′x± c′y ≡ b′x 6≡ 0 (mod z)

� Case 2: w = r±αz ◦ r±αx ◦ v, same as above.

� Case 3: w = r±αx ◦ r±αx ◦ v

b′′ ≡ b′x∓ c′y ≡ xb′ ∓ (cx± by)y = xb′ ∓ cxy − by2 =

= xb′ + x2b∓ cxy − b(y2 + x2) = xb′ + x(xb− cy)− bz2 ≡
≡ xb′ + xb′ 6≡ 2xb′ ≡ 0 (mod z)

� Case 4: w = r±αz ◦ r±αx ◦ v, same as above.

Now this shows that ~v cannot be mapped to a vector with an integer as the second entry, and in particular
not to itself. Now it is well known that we can get a primitive Pythagorean triple (this is even in Euclid's
elements) by plugging in coprime m,n with not both of them odd into

x = 2mn

y = m2 − n2

z = m2 + n2 (�)

Actually we can allow both of them to be odd since we only care about the ratio x
z , and dividing both by 2

again yields a primitive triple. So we have seen that for

cosα =
2mn

m2 + n2
=

2
m
n + n

m

=
2q

q2 + 1

for q = m
n , we get a free group. We obviously don't allow m = 0, nor do we allow m = n = 1 since then

y = 0, and then y, z are not coprime.

Corollary 9.2. The numbers cosα for which we get a free group lie dense in [0, 1].

Proof. Q lies dense in R, and the continuous mapping q 7→ 2q
q2+1 preserves this property.

We can say more for rational cosα. The following result was sketched to the author by Emmanuel Breuillard.

Lemma 9.3. If A,B ∈ SL2(C), then

trA = trA−1 (9.1)

trAB = trA trB − trAB−1 (9.2)

Interpret F2 to be the free group on the letters A and B.

Theorem 9.4 (2-generator version of Fricke-Klein). For matrices A,B ∈ SL2(C) and a word w ∈ F2, we
have that trw is a polynomial in trA, trB and trAB. [14]

Proof. We use induction over the length l of the freely and cyclically reduced w. This is allowed since the
trace is unchanged by cyclic permutations. Clearly l = 1, 2 is obvious using the relations above. Write
w = Am1Bm2 · · ·Amk ,mi ∈ Z\{0}
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� Case 1: k > 2.
Here, by (9.2) we can write

tr (Am1Bm2 · · ·Amk) = trAm1 tr (Bm2 · · ·Amk)− tr (Am1−mkB−m2 · · ·B−mk−1),

for which k is smaller, so we can assume k ≤ 2. A similar argument takes care of the case when w ends
with a power of B.

� Case 2: w = Am1Bm2 , where w.l.o.g. m2 ≥ 2.

tr (Am1Bm2) = tr (Am1Bm2−1) trB − tr (Am1Bm2−2),

and all words on the right hand side have a smaller length than |m1|+ |m2|, so we are done.

� Case 3: w = Am

Then we can check that trw = Tm(trA), where T0 = 2, T1 = x, Tm = x · Tm−1 − Tm−2 are a modi�ed
version of the Chebyshev polynomials.

We can actually use elements of SO3 in the theorem above instead of SL2(C) because of the following theorem.

Theorem 9.5. SU2 is a double cover of SO3. [32]

Proof. This is well known, SU2 is isomorphic to the group of unit quaterniona, which (modulo sign) correspond
to rotations of three dimensional space.

Lemma 9.6. Assuming trA = trB = 2x+ 1, trAB = 2x+ x2, the resulting polynomial trw in x has

(a) degree l

(b) a leading coe�cient that is a power of two.

Proof. For both use induction. For (a), the claim is again obvious for l = 1, 2. In case 1 of Theorem 9.4, we
see that |m1 −mk| < |m1|+ |mk| given that −m1 6= mk, i.e. w is cyclically reduced, so the second term on
the right side is actually shorter than

∑
mi. The �rst term will have degree l by induction though, so we are

done. Similarly we get Case 2 and 3. For (b), the induction is again started since l = 1, 2 is obvious. Since
in every case the second term has a smaller degree than the �rst, the property of having a leading coe�cient
that is a power of two is preserved.

Corollary 9.7. If cosα is rational but not dyadic, then the rotation matrices by α around the x and z axes
generate a free group.

Proof. Set

A :=

1 0 0
0 cosα − sinα
0 sinα cosα

 B :=

cosα − sinα 0
sinα cosα 0

0 0 1

 ,

we see that we have the conditions of the previous lemma with x = cosα, so if cosα is a rational root of the
resulting polynomial, by the rational roots theorem its denominator must divide the leading coe�cient, i.e.
be a power of 2.

Corollary 9.8. If cosα is transcendental then again the rotation matrices by α around the x and z axes
generate a free group.

Proof. Again by the same argument as in the previous lemma, x is a root of an integer polynomial if there
is a relation.

Actually we can show that Corollary 9.7 is strictly better than Theorem 9.1.

Proposition 9.9. No rational number of the form 2q
q2+1 is dyadic unless q = 0, 1.
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Proof. Writing
2q

q2 + 1
=

a

2k

is equivalent to saying

m2 + n2|2k ·mn, (9.1)

where k > 2 and m,n coprime. Now if an odd prime p divides m, then it cannot divide n. But then it doesn't
divide m2 +n2. So in fact no odd prime can divide m2 +n2, since then by 9.1. it would divide either m or n,
a contradiction to the above argument. This means that m2 + n2 = 2l, and since m and n are coprime they
aren't both even, and then none of them are even, and then m2 + n2 ≡ 2 (mod 4). This means that l = 1
and m = n = 1, but we had removed the possibility of q = 1.

Interestingly, both of these methods can be trumped by the following result from a paper by Swierczkowski
[40].

Theorem 9.10. If cosα ∈ Q\{0,± 1
2 ,±1}, then again the rotation matrices by α around the x and z axes

generate a free group.
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