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Mathematics  and philosophy have  always  seemed to  have  a  special  relationship.  Many
mathematical greats such as Leibniz, Pascal, Gödel or most ancient Greek mathematicians
are also well-known for their contributions to philosophy. We take this as a given, seeing
both disciplines as a way of finding non-emprical, a priori knowledge by only using logic in
a rigourous fashion.
Is  their  interweaved  state  of  being  in  any  way  reasonable?  Aren’t  mathematics  and
philosophy,  albeit  related,  built  up  based  on  fundamentally  different  viewpoints  of  the
world?  Indeed,  one  could  argue  that  the  core  task  of  mathematics  is  to  study  logical
implication,  that  is,  statements  of  the  form  A  implies  B.  Within  this  viewpoint,  a
mathematician does not question any deeper truths. She simply assumes certain statements
and studies their consequences, turning a blind eye to their foundedness. In contrast, while a
philosopher may also study implications, her true objective would be the analysis of the
justification  of  statements  A and  B.  In  short:  A  mathematician  does  not  care  about
ontological commitment.
While this  may superficially seem to be the case,  a glance into the complex history of
modern mathematical formalism and the gradual foundation of axiomatic set theory will
show us that this assumption is flawed. As soon one begins to question the mathematics one
is  doing and the implicit  assumptions one makes,  one will  without fail  have to involve
philosophical thought processes to progress.

Before delving deeper, we need to think about rigour. We already mentioned rigour as being
one of the common characteristics of mathematics and philosophy – in fact, we will see that
the drive for rigour occuring in the mathematical world around the beginning of the 19 th

century  was  central  in  the  development  of  the  ideas  connecting  philosophy  and
mathematics.
So – why does an argument need to be rigourous? Can’t we rely on our intuitions to guide
us? The clear answer here is no. Not only can intuitions differ between people, but they may
even  be  misleading,  as  seen  many,  many  times  over  the  course  of  the  history  of
mathematics.  For  example,  it  was  thought  and  widely  accepted  that  every  continuous
function is differentiable for centuries – and frankly, this does intuitively make sense – until
Weierstrass exhibited the first counterexample in 1872, not without considerable backlash
from the matahematical community. Shortly, we have no guarantee of a statement’s truth
until we can rigourously demonstrate it to be so.
But we soon see the problem with this. If we want to prove a statement, we will then need
an already established statement or statements that it follows from. But these will also need
justification, and so on. This means that if we do not have a certain limited set of statements
that everyone simply accepts to be true, doing mathematics will prove impossible in the
long run.

This is  where  set  theory comes in.  We realise that  we don’t  know anything at  all  in  a
fundamental manner about numbers, functions, triangles or any other object we care about.
But we more or less have an idea of how to work with sets – we have the intuition that sets
can contain other objects, and that is their entire defining property. So is it possible to define
(almost) every single mathematical object we care about as a set? It turns out it is. It took
almost a century and many failed attempts until Ernst Zermelo presented his set of axioms
for set theory in 1910, which after improvements by Abraham Fraenkel is still used as the



basis for modern mathematics today (known as ZF, the Zermelo-Frankel Axioms). They
contain statements such as “the empty set is a set” or “the union of sets is a set” as well as
some more unintuitive ones. An important stepping stone in this development was the work
of Gottlob Frege, who had offered an axiomatisation in 1893 which was shown to be faulty
in Bertrand Russell by the famous Russell’s Paradox.
But what does it mean for an axiomatisation of set theory to be faulty? Why can’t we simply
define a set as any collection of objects, which are by necessity other sets, since these are
the only objects we know about? This is sadly too good to be true – what Frege had used
was a rule he dubbed the comprehension principle,  which is exactly this – it simply states
that  for  any  property  P,  there  exists  the  set  of  all  sets  that  have  property  P.  Russell
discovered that accepting this as an axiom inevitably leads to contradiction – this was his
argument: Take, as P, the property “does not contain itself.” Frege’s axiom then guarantees
that there exists the set of all sets that do not contain itself. Now, asks Russell, does this set
contain itself? If it did, then it wouldn’t. If it didn’t, then it would. A contradiction.

A quick  digression  to  be  clear  on  things  –   why  is  it  bad  to  have  contradictions  in
mathematics? Can’t we just accept the axioms we like and just ignore their contradictory
conclusions while keeping the ones we like? The principle from classical logic  ex falso
quodlibet gives us a definitive no – this states that once given a contradiction, we can derive
any statement we can think of, thus rendering any and all conclusions pointless. To see why
this is true, here an example, using the principle of disjunctive syllogisms (if we know that
the statement “P or Q” is correct, but P is false, then we can conclude that Q is true):
Imagine a contradiction, such as “It is raining and it is not raining.” We can conclude that
the  statement  “It  is  raining,  or  London  is  in  France”  is  true.  But  now the  disjunctive
syllogism applied to this statement plus the statement “it is not raining” gives the absurd
statement “London is in France”.

So now that we know that we cannot simply let everything be a set – what is a set then? At
this point, the connection to philosophy becomes a lot clearer. What we require from our
axioms is more or less the following bare minimum: 
First, they should not lead to contradictions. Second, they should be rich enough to allow us
to do interesting mathematics, as  well as not invalidate all of the results discovered in the
thousands  of  years  of  mathematics  up  to  now.  And  finally,  the  most  philosophically
flavoured of them all, they should be motivated, that is, we should accept them as a good,
intuitive model of reality.

At this  point  we are ready to introduce the main dichotomy of standpoints  on how the
axioms mathematics is built upon should be formulated. Set-theoretic platonism, with clear
connections  to  regular  platonism,  maintains  that  there  is  but  one  correct  answer  to  the
question, that is, there exists a single universe of sets we should try to describe as accurately
as  possible.  At  the  opposite  end of  the  spectrum,  we have  formalism,  maintaining  that
mathematics has no claim to anything of the sort and is simply the study of manipulation of
strings under certain rules, and even these rules may be changed as we will. For a formalist,
the  only  interest  would  be  changing  the  axioms  and  recording  what  follows,  while  a
platonist searches for the one true all-encompassing axiom system.

An example illustrating the different approaches would be the Continuum Hypothesis (CH),
a question posed by Georg Cantor, the father of set theory, in 1878. What it states is not



necessarily important for this article – just for the sake of clarity,  CH asks the question
whether or not there exists a set of a given size inside the framework of the Zermelo-Frankel
axioms, or better said, asserts that it does not. Cantor fervently believed CH was true, that is,
that there did not exist such a set, and tried to prove it for many years without success. We
would expect the final answer to be yes or no, but it wasn’t resolved definitely until 1963
when Paul Cohen demonstrated that neither is true – it is simply an independent statement
of ZF! This means that there exist certain interpretations of ZF in which CH is true and
certain interpretations where it isn’t – in short, ZF does not “pin down” the universe of sets
in a unique way. 
An important player in all of this is Kurt Gödel, who seen as the pioneer of modern logics.
In  1940,  he  was  able  to  prove  that  CH cannot  be  disproved from ZF,  thus  laying the
groundwork for its completion in 1963, where it was further proved that it cannot be proved
from ZF, thus establishing its independence. 

So we already know that ZF does not “pin down” the universe of sets, that is, it leaves room
for ambiguity by there being certain statements (e.g. the continuum hypothesis) that can
either be true or not true. In fact, as Gödel was able to prove in 1931, for any axiomatic
system able  to  model  basic  arithmetic,  there  will  necessarily exist  statements  it  cannot
prove, which has gone down in history as Gödel’s first incompleteness theorem. In other
words, we can forget about ever having the true axiomatisation of reality. So, the second of
our requisites for a good axiomatic system (us able to do all/a lot of mathematics inside)
more or less fails, for some definition of failure.
But,  we  may  ask,  surely  ZF  doesn’t  allow  contradictions?  Again,  Gödel  will  have  to
disappoint us. His second incompleteness theorem proves that it is impossible to prove the
consistency (that is, the non-contradictory nature) of an axiom system from within itself. We
would  have  to  assume  more  axioms,  but  then  we  could  never  guarantee  these  to  be
consistent, and so on. This simply means that, unless someone directly exhibits one, we do
not know whether ZF allows contradictions, and we will never know.

Gödel was a staunch platonist, and he believed CH to be false. So how does this fit together
with his proof that it cannot be disproved from ZF? Very easily – he simply believed ZF to
be incomplete,  to not be the one true axiom system. And this is  closely related to how
modern  mathematics  approaches  the  subject.  What  many  mathematicians  are  currently
working on is not trying to prove CH, since we already know that to be impossible, but to
think of motivated and intuitive axioms one could add to ZF so that either CH or its negation
would follow – but what is this, if not philosophy?
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